--- license: other tags: - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-toolwear results: [] --- # segformer-b0-finetuned-segments-toolwear This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co./nvidia/mit-b0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2940 - Mean Iou: 0.4104 - Mean Accuracy: 0.8207 - Overall Accuracy: 0.8207 - Accuracy Unlabeled: nan - Accuracy Tool: nan - Accuracy Wear: 0.8207 - Iou Unlabeled: 0.0 - Iou Tool: nan - Iou Wear: 0.8207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:| | 0.843 | 1.82 | 20 | 0.8832 | 0.4637 | 0.9274 | 0.9274 | nan | nan | 0.9274 | 0.0 | nan | 0.9274 | | 0.6849 | 3.64 | 40 | 0.5914 | 0.4361 | 0.8722 | 0.8722 | nan | nan | 0.8722 | 0.0 | nan | 0.8722 | | 0.5085 | 5.45 | 60 | 0.5178 | 0.4628 | 0.9256 | 0.9256 | nan | nan | 0.9256 | 0.0 | nan | 0.9256 | | 0.4027 | 7.27 | 80 | 0.5099 | 0.4598 | 0.9195 | 0.9195 | nan | nan | 0.9195 | 0.0 | nan | 0.9195 | | 0.3536 | 9.09 | 100 | 0.4262 | 0.4365 | 0.8730 | 0.8730 | nan | nan | 0.8730 | 0.0 | nan | 0.8730 | | 0.3657 | 10.91 | 120 | 0.3891 | 0.4228 | 0.8457 | 0.8457 | nan | nan | 0.8457 | 0.0 | nan | 0.8457 | | 0.3234 | 12.73 | 140 | 0.4221 | 0.4377 | 0.8754 | 0.8754 | nan | nan | 0.8754 | 0.0 | nan | 0.8754 | | 0.2874 | 14.55 | 160 | 0.3355 | 0.4098 | 0.8197 | 0.8197 | nan | nan | 0.8197 | 0.0 | nan | 0.8197 | | 0.2335 | 16.36 | 180 | 0.3570 | 0.4266 | 0.8531 | 0.8531 | nan | nan | 0.8531 | 0.0 | nan | 0.8531 | | 0.2167 | 18.18 | 200 | 0.3238 | 0.4404 | 0.8808 | 0.8808 | nan | nan | 0.8808 | 0.0 | nan | 0.8808 | | 0.2201 | 20.0 | 220 | 0.3103 | 0.4185 | 0.8370 | 0.8370 | nan | nan | 0.8370 | 0.0 | nan | 0.8370 | | 0.205 | 21.82 | 240 | 0.2881 | 0.4115 | 0.8230 | 0.8230 | nan | nan | 0.8230 | 0.0 | nan | 0.8230 | | 0.241 | 23.64 | 260 | 0.2940 | 0.4104 | 0.8207 | 0.8207 | nan | nan | 0.8207 | 0.0 | nan | 0.8207 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3