File size: 9,604 Bytes
b3fd691
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb6fdb
b3fd691
bba19c4
 
 
 
b3fd691
bba19c4
 
b3fd691
bba19c4
 
b3fd691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc85fee
b3fd691
 
 
bba19c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3fd691
 
 
 
 
693ebf3
 
b3fd691
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
license: other
tags:
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-toolwear
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-finetuned-segments-toolwear

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co./nvidia/mit-b0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0406
- Mean Iou: 0.3913
- Mean Accuracy: 0.7826
- Overall Accuracy: 0.7826
- Accuracy Unlabeled: nan
- Accuracy Tool: nan
- Accuracy Wear: 0.7826
- Iou Unlabeled: 0.0
- Iou Tool: nan
- Iou Wear: 0.7826

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
| 0.7907        | 1.18  | 20   | 0.8970          | 0.3905   | 0.7810        | 0.7810           | nan                | nan           | 0.7810        | 0.0           | nan      | 0.7810   |
| 0.515         | 2.35  | 40   | 0.4998          | 0.3753   | 0.7506        | 0.7506           | nan                | nan           | 0.7506        | 0.0           | nan      | 0.7506   |
| 0.405         | 3.53  | 60   | 0.3773          | 0.4074   | 0.8148        | 0.8148           | nan                | nan           | 0.8148        | 0.0           | nan      | 0.8148   |
| 0.3532        | 4.71  | 80   | 0.3191          | 0.4127   | 0.8255        | 0.8255           | nan                | nan           | 0.8255        | 0.0           | nan      | 0.8255   |
| 0.2912        | 5.88  | 100  | 0.2693          | 0.4314   | 0.8628        | 0.8628           | nan                | nan           | 0.8628        | 0.0           | nan      | 0.8628   |
| 0.2128        | 7.06  | 120  | 0.2297          | 0.4067   | 0.8133        | 0.8133           | nan                | nan           | 0.8133        | 0.0           | nan      | 0.8133   |
| 0.1676        | 8.24  | 140  | 0.1849          | 0.4101   | 0.8203        | 0.8203           | nan                | nan           | 0.8203        | 0.0           | nan      | 0.8203   |
| 0.1712        | 9.41  | 160  | 0.1446          | 0.3677   | 0.7354        | 0.7354           | nan                | nan           | 0.7354        | 0.0           | nan      | 0.7354   |
| 0.1344        | 10.59 | 180  | 0.1265          | 0.3931   | 0.7861        | 0.7861           | nan                | nan           | 0.7861        | 0.0           | nan      | 0.7861   |
| 0.1315        | 11.76 | 200  | 0.1023          | 0.3511   | 0.7022        | 0.7022           | nan                | nan           | 0.7022        | 0.0           | nan      | 0.7022   |
| 0.109         | 12.94 | 220  | 0.1047          | 0.3986   | 0.7973        | 0.7973           | nan                | nan           | 0.7973        | 0.0           | nan      | 0.7973   |
| 0.0985        | 14.12 | 240  | 0.0913          | 0.4042   | 0.8084        | 0.8084           | nan                | nan           | 0.8084        | 0.0           | nan      | 0.8084   |
| 0.0711        | 15.29 | 260  | 0.0773          | 0.3192   | 0.6384        | 0.6384           | nan                | nan           | 0.6384        | 0.0           | nan      | 0.6384   |
| 0.0636        | 16.47 | 280  | 0.0798          | 0.4138   | 0.8275        | 0.8275           | nan                | nan           | 0.8275        | 0.0           | nan      | 0.8275   |
| 0.0619        | 17.65 | 300  | 0.0692          | 0.3770   | 0.7540        | 0.7540           | nan                | nan           | 0.7540        | 0.0           | nan      | 0.7540   |
| 0.0573        | 18.82 | 320  | 0.0608          | 0.3386   | 0.6771        | 0.6771           | nan                | nan           | 0.6771        | 0.0           | nan      | 0.6771   |
| 0.0579        | 20.0  | 340  | 0.0609          | 0.3882   | 0.7765        | 0.7765           | nan                | nan           | 0.7765        | 0.0           | nan      | 0.7765   |
| 0.0505        | 21.18 | 360  | 0.0552          | 0.3748   | 0.7496        | 0.7496           | nan                | nan           | 0.7496        | 0.0           | nan      | 0.7496   |
| 0.0514        | 22.35 | 380  | 0.0606          | 0.4208   | 0.8416        | 0.8416           | nan                | nan           | 0.8416        | 0.0           | nan      | 0.8416   |
| 0.0475        | 23.53 | 400  | 0.0513          | 0.3796   | 0.7593        | 0.7593           | nan                | nan           | 0.7593        | 0.0           | nan      | 0.7593   |
| 0.0442        | 24.71 | 420  | 0.0526          | 0.4185   | 0.8371        | 0.8371           | nan                | nan           | 0.8371        | 0.0           | nan      | 0.8371   |
| 0.0408        | 25.88 | 440  | 0.0526          | 0.4044   | 0.8087        | 0.8087           | nan                | nan           | 0.8087        | 0.0           | nan      | 0.8087   |
| 0.0337        | 27.06 | 460  | 0.0485          | 0.3932   | 0.7865        | 0.7865           | nan                | nan           | 0.7865        | 0.0           | nan      | 0.7865   |
| 0.0384        | 28.24 | 480  | 0.0463          | 0.4049   | 0.8098        | 0.8098           | nan                | nan           | 0.8098        | 0.0           | nan      | 0.8098   |
| 0.0469        | 29.41 | 500  | 0.0459          | 0.3687   | 0.7374        | 0.7374           | nan                | nan           | 0.7374        | 0.0           | nan      | 0.7374   |
| 0.0305        | 30.59 | 520  | 0.0444          | 0.3610   | 0.7220        | 0.7220           | nan                | nan           | 0.7220        | 0.0           | nan      | 0.7220   |
| 0.0364        | 31.76 | 540  | 0.0461          | 0.4147   | 0.8294        | 0.8294           | nan                | nan           | 0.8294        | 0.0           | nan      | 0.8294   |
| 0.034         | 32.94 | 560  | 0.0434          | 0.3907   | 0.7813        | 0.7813           | nan                | nan           | 0.7813        | 0.0           | nan      | 0.7813   |
| 0.0276        | 34.12 | 580  | 0.0431          | 0.3880   | 0.7759        | 0.7759           | nan                | nan           | 0.7759        | 0.0           | nan      | 0.7759   |
| 0.0281        | 35.29 | 600  | 0.0424          | 0.3761   | 0.7522        | 0.7522           | nan                | nan           | 0.7522        | 0.0           | nan      | 0.7522   |
| 0.0264        | 36.47 | 620  | 0.0438          | 0.4045   | 0.8090        | 0.8090           | nan                | nan           | 0.8090        | 0.0           | nan      | 0.8090   |
| 0.0269        | 37.65 | 640  | 0.0430          | 0.4041   | 0.8082        | 0.8082           | nan                | nan           | 0.8082        | 0.0           | nan      | 0.8082   |
| 0.0245        | 38.82 | 660  | 0.0409          | 0.3803   | 0.7607        | 0.7607           | nan                | nan           | 0.7607        | 0.0           | nan      | 0.7607   |
| 0.0241        | 40.0  | 680  | 0.0436          | 0.4147   | 0.8295        | 0.8295           | nan                | nan           | 0.8295        | 0.0           | nan      | 0.8295   |
| 0.027         | 41.18 | 700  | 0.0417          | 0.3901   | 0.7803        | 0.7803           | nan                | nan           | 0.7803        | 0.0           | nan      | 0.7803   |
| 0.0227        | 42.35 | 720  | 0.0405          | 0.3914   | 0.7828        | 0.7828           | nan                | nan           | 0.7828        | 0.0           | nan      | 0.7828   |
| 0.0269        | 43.53 | 740  | 0.0409          | 0.3907   | 0.7814        | 0.7814           | nan                | nan           | 0.7814        | 0.0           | nan      | 0.7814   |
| 0.0223        | 44.71 | 760  | 0.0409          | 0.3938   | 0.7877        | 0.7877           | nan                | nan           | 0.7877        | 0.0           | nan      | 0.7877   |
| 0.0268        | 45.88 | 780  | 0.0405          | 0.3888   | 0.7776        | 0.7776           | nan                | nan           | 0.7776        | 0.0           | nan      | 0.7776   |
| 0.0228        | 47.06 | 800  | 0.0408          | 0.3908   | 0.7817        | 0.7817           | nan                | nan           | 0.7817        | 0.0           | nan      | 0.7817   |
| 0.0218        | 48.24 | 820  | 0.0406          | 0.3868   | 0.7736        | 0.7736           | nan                | nan           | 0.7736        | 0.0           | nan      | 0.7736   |
| 0.0221        | 49.41 | 840  | 0.0406          | 0.3913   | 0.7826        | 0.7826           | nan                | nan           | 0.7826        | 0.0           | nan      | 0.7826   |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.13.3