HorcruxNo13's picture
Model save
19ad9bd verified
|
raw
history blame
4.97 kB
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: beit-base-patch16-224
    results: []

beit-base-patch16-224

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5338
  • Accuracy: 0.7165
  • Precision: 0.7127
  • Recall: 0.7165
  • F1 Score: 0.7139

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 192
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 45

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Score
No log 0.8 2 0.7127 0.5686 0.3992 0.5686 0.4691
No log 2.0 5 0.5967 0.6863 0.7053 0.6863 0.6139
No log 2.8 7 0.5384 0.7843 0.7801 0.7843 0.7792
No log 4.0 10 0.6429 0.6078 0.6547 0.6078 0.6164
No log 4.8 12 0.6321 0.7255 0.7205 0.7255 0.7011
No log 6.0 15 0.6473 0.7255 0.7164 0.7255 0.7095
No log 6.8 17 0.7575 0.6863 0.6694 0.6863 0.6584
No log 8.0 20 0.9926 0.7255 0.7312 0.7255 0.6908
No log 8.8 22 0.9139 0.7255 0.7205 0.7255 0.7011
No log 10.0 25 1.0884 0.7059 0.6937 0.7059 0.6845
No log 10.8 27 1.2796 0.7451 0.7521 0.7451 0.7179
0.287 12.0 30 1.3326 0.6863 0.6704 0.6863 0.6680
0.287 12.8 32 1.5649 0.7255 0.7205 0.7255 0.7011
0.287 14.0 35 1.7452 0.7255 0.7205 0.7255 0.7011
0.287 14.8 37 1.7826 0.7255 0.7205 0.7255 0.7011
0.287 16.0 40 1.9538 0.7255 0.7312 0.7255 0.6908
0.287 16.8 42 1.8850 0.6863 0.6694 0.6863 0.6584
0.287 18.0 45 1.7633 0.6863 0.6739 0.6863 0.6756
0.287 18.8 47 1.7925 0.7059 0.6940 0.7059 0.6925
0.287 20.0 50 2.1156 0.7255 0.7312 0.7255 0.6908
0.287 20.8 52 2.0156 0.7255 0.7205 0.7255 0.7011
0.287 22.0 55 1.8471 0.7255 0.7164 0.7255 0.7095
0.287 22.8 57 1.7831 0.7647 0.7593 0.7647 0.7567
0.0041 24.0 60 1.7628 0.7647 0.7593 0.7647 0.7567
0.0041 24.8 62 1.8077 0.7451 0.7382 0.7451 0.7335
0.0041 26.0 65 1.8068 0.7843 0.7823 0.7843 0.7745
0.0041 26.8 67 1.7925 0.7647 0.7593 0.7647 0.7567
0.0041 28.0 70 1.7721 0.7843 0.7823 0.7843 0.7745
0.0041 28.8 72 1.7919 0.7647 0.7624 0.7647 0.7510
0.0041 30.0 75 1.9588 0.7451 0.7521 0.7451 0.7179
0.0041 30.8 77 1.9200 0.7451 0.7521 0.7451 0.7179
0.0041 32.0 80 1.7746 0.7451 0.7521 0.7451 0.7179
0.0041 32.8 82 1.7253 0.7647 0.7624 0.7647 0.7510
0.0041 34.0 85 1.6992 0.7451 0.7382 0.7451 0.7335
0.0041 34.8 87 1.6938 0.7451 0.7382 0.7451 0.7335
0.0031 36.0 90 1.7014 0.7451 0.7382 0.7451 0.7335

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2