|
--- |
|
license: mit |
|
base_model: TheBloke/zephyr-7B-beta-GPTQ |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: zephyr-support-chatbot |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# zephyr-support-chatbot |
|
|
|
This model is a fine-tuned version of [TheBloke/zephyr-7B-beta-GPTQ](https://huggingface.co./TheBloke/zephyr-7B-beta-GPTQ) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2805 |
|
- Rouge1: 0.6842 |
|
- Rouge2: 0.4855 |
|
- Rougel: 0.6563 |
|
- Rougelsum: 0.6711 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 2.422 | 1.11 | 10 | 2.7640 | 0.4291 | 0.1054 | 0.3461 | 0.3890 | |
|
| 2.2454 | 2.22 | 20 | 2.5777 | 0.4423 | 0.1184 | 0.3607 | 0.4034 | |
|
| 2.1454 | 3.33 | 30 | 2.3809 | 0.4713 | 0.1437 | 0.3860 | 0.4288 | |
|
| 1.9437 | 4.44 | 40 | 2.1804 | 0.5021 | 0.1646 | 0.4027 | 0.4598 | |
|
| 1.7975 | 5.56 | 50 | 2.0124 | 0.5355 | 0.1786 | 0.4425 | 0.4941 | |
|
| 1.6621 | 6.67 | 60 | 1.8249 | 0.5540 | 0.2188 | 0.5011 | 0.5348 | |
|
| 1.5141 | 7.78 | 70 | 1.6004 | 0.6161 | 0.3377 | 0.5701 | 0.5961 | |
|
| 1.3291 | 8.89 | 80 | 1.4718 | 0.6513 | 0.3903 | 0.6072 | 0.6322 | |
|
| 1.2206 | 10.0 | 90 | 1.3916 | 0.6652 | 0.4218 | 0.6265 | 0.6471 | |
|
| 1.1767 | 11.11 | 100 | 1.3339 | 0.6840 | 0.4769 | 0.6489 | 0.6675 | |
|
| 1.1462 | 12.22 | 110 | 1.3115 | 0.6807 | 0.4785 | 0.6506 | 0.6665 | |
|
| 1.0924 | 13.33 | 120 | 1.2993 | 0.6843 | 0.4842 | 0.6539 | 0.6701 | |
|
| 1.0602 | 14.44 | 130 | 1.2917 | 0.6854 | 0.4845 | 0.6561 | 0.6717 | |
|
| 1.1177 | 15.56 | 140 | 1.2863 | 0.6835 | 0.4842 | 0.6547 | 0.6703 | |
|
| 1.0756 | 16.67 | 150 | 1.2830 | 0.6838 | 0.4825 | 0.6549 | 0.6705 | |
|
| 1.0894 | 17.78 | 160 | 1.2813 | 0.6838 | 0.4844 | 0.6560 | 0.6719 | |
|
| 1.0649 | 18.89 | 170 | 1.2806 | 0.6842 | 0.4855 | 0.6563 | 0.6711 | |
|
| 1.1019 | 20.0 | 180 | 1.2805 | 0.6842 | 0.4855 | 0.6563 | 0.6711 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.0 |
|
- Tokenizers 0.15.0 |
|
|