HimashaJ96's picture
End of training
274c845
|
raw
history blame
3.11 kB
metadata
license: mit
base_model: TheBloke/zephyr-7B-beta-GPTQ
tags:
  - trl
  - sft
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: zephyr-support-chatbot
    results: []

zephyr-support-chatbot

This model is a fine-tuned version of TheBloke/zephyr-7B-beta-GPTQ on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2805
  • Rouge1: 0.6842
  • Rouge2: 0.4855
  • Rougel: 0.6563
  • Rougelsum: 0.6711

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
2.422 1.11 10 2.7640 0.4291 0.1054 0.3461 0.3890
2.2454 2.22 20 2.5777 0.4423 0.1184 0.3607 0.4034
2.1454 3.33 30 2.3809 0.4713 0.1437 0.3860 0.4288
1.9437 4.44 40 2.1804 0.5021 0.1646 0.4027 0.4598
1.7975 5.56 50 2.0124 0.5355 0.1786 0.4425 0.4941
1.6621 6.67 60 1.8249 0.5540 0.2188 0.5011 0.5348
1.5141 7.78 70 1.6004 0.6161 0.3377 0.5701 0.5961
1.3291 8.89 80 1.4718 0.6513 0.3903 0.6072 0.6322
1.2206 10.0 90 1.3916 0.6652 0.4218 0.6265 0.6471
1.1767 11.11 100 1.3339 0.6840 0.4769 0.6489 0.6675
1.1462 12.22 110 1.3115 0.6807 0.4785 0.6506 0.6665
1.0924 13.33 120 1.2993 0.6843 0.4842 0.6539 0.6701
1.0602 14.44 130 1.2917 0.6854 0.4845 0.6561 0.6717
1.1177 15.56 140 1.2863 0.6835 0.4842 0.6547 0.6703
1.0756 16.67 150 1.2830 0.6838 0.4825 0.6549 0.6705
1.0894 17.78 160 1.2813 0.6838 0.4844 0.6560 0.6719
1.0649 18.89 170 1.2806 0.6842 0.4855 0.6563 0.6711
1.1019 20.0 180 1.2805 0.6842 0.4855 0.6563 0.6711

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0