license: apache-2.0
Optimum Habana is the interface between the 🤗 Transformers and 🤗 Diffusers libraries and Habana's Gaudi processor (HPU). It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks. Learn more about how to take advantage of the power of Habana HPUs to train Transformers models at hf.co/hardware/habana.
Stable Diffusion HPU configuration
This model only contains the GaudiConfig
file for running Stable Diffusion 1 (e.g. CompVis/stable-diffusion-v1-4) or Stable Diffusion 2 (e.g. stabilityai/stable-diffusion-2) on Habana's Gaudi processors (HPU).
This model contains no model weights, only a GaudiConfig.
This enables to specify:
use_habana_mixed_precision
: whether to use Habana Mixed Precision (HMP)hmp_opt_level
: optimization level for HMP, see here for a detailed explanationhmp_bf16_ops
: list of operators that should run in bf16hmp_fp32_ops
: list of operators that should run in fp32hmp_is_verbose
: verbosity
Usage
The GaudiStableDiffusionPipeline
(GaudiDDIMScheduler
) is instantiated the same way as the StableDiffusionPipeline
(DDIMScheduler
) in the 🤗 Diffusers library.
The only difference is that there are a few new training arguments specific to HPUs.
Here is an example with one prompt:
from optimum.habana import GaudiConfig
from optimum.habana.diffusers import GaudiDDIMScheduler, GaudiStableDiffusionPipeline
model_name = "stabilityai/stable-diffusion-2"
scheduler = GaudiDDIMScheduler.from_pretrained(model_name, subfolder="scheduler")
pipeline = GaudiStableDiffusionPipeline.from_pretrained(
model_name,
scheduler=scheduler,
use_habana=True,
use_hpu_graphs=True,
gaudi_config="Habana/stable-diffusion",
)
outputs = generator(
["An image of a squirrel in Picasso style"],
num_images_per_prompt=16,
batch_size=4,
)
Check out the documentation and this example for more advanced usage.