Create model card
Browse files
README.md
CHANGED
@@ -1,3 +1,51 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
[Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the 🤗 Transformers and 🤗 Diffusers libraries and Habana's Gaudi processor (HPU). It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks.
|
6 |
+
Learn more about how to take advantage of the power of Habana HPUs to train Transformers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana).
|
7 |
+
|
8 |
+
## Stable Diffusion HPU configuration
|
9 |
+
|
10 |
+
This model only contains the `GaudiConfig` file for running **Stable Diffusion 1** (e.g. [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4)) or **Stable Diffusion 2** (e.g. [stabilityai/stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2)) on Habana's Gaudi processors (HPU).
|
11 |
+
|
12 |
+
**This model contains no model weights, only a GaudiConfig.**
|
13 |
+
|
14 |
+
This enables to specify:
|
15 |
+
- `use_habana_mixed_precision`: whether to use Habana Mixed Precision (HMP)
|
16 |
+
- `hmp_opt_level`: optimization level for HMP, see [here](https://docs.habana.ai/en/latest/PyTorch/PyTorch_Mixed_Precision/PT_Mixed_Precision.html#configuration-options) for a detailed explanation
|
17 |
+
- `hmp_bf16_ops`: list of operators that should run in bf16
|
18 |
+
- `hmp_fp32_ops`: list of operators that should run in fp32
|
19 |
+
- `hmp_is_verbose`: verbosity
|
20 |
+
|
21 |
+
## Usage
|
22 |
+
|
23 |
+
The `GaudiStableDiffusionPipeline` (`GaudiDDIMScheduler`) is instantiated the same way as the `StableDiffusionPipeline` (`DDIMScheduler`) in the 🤗 Diffusers library.
|
24 |
+
The only difference is that there are a few new training arguments specific to HPUs.
|
25 |
+
|
26 |
+
Here is an example with one prompt:
|
27 |
+
```python
|
28 |
+
from optimum.habana import GaudiConfig
|
29 |
+
from optimum.habana.diffusers import GaudiDDIMScheduler, GaudiStableDiffusionPipeline
|
30 |
+
|
31 |
+
|
32 |
+
model_name = "stabilityai/stable-diffusion-2"
|
33 |
+
|
34 |
+
scheduler = GaudiDDIMScheduler.from_pretrained(model_name, subfolder="scheduler")
|
35 |
+
|
36 |
+
pipeline = GaudiStableDiffusionPipeline.from_pretrained(
|
37 |
+
model_name,
|
38 |
+
scheduler=scheduler,
|
39 |
+
use_habana=True,
|
40 |
+
use_hpu_graphs=True,
|
41 |
+
gaudi_config="Habana/stable-diffusion",
|
42 |
+
)
|
43 |
+
|
44 |
+
outputs = generator(
|
45 |
+
["An image of a squirrel in Picasso style"],
|
46 |
+
num_images_per_prompt=16,
|
47 |
+
batch_size=4,
|
48 |
+
)
|
49 |
+
```
|
50 |
+
|
51 |
+
Check out the [documentation](https://huggingface.co/docs/optimum/habana/usage_guides/stable_diffusion) and [this example](https://github.com/huggingface/optimum-habana/tree/main/examples/stable-diffusion) for more advanced usage.
|