|
--- |
|
library_name: transformers |
|
language: |
|
- ru |
|
license: apache-2.0 |
|
base_model: PekingU/rtdetr_r50vd_coco_o365 |
|
tags: |
|
- object-detection |
|
- pytorch-lightning |
|
- russian-license-plates |
|
- rt-detr |
|
model-index: |
|
- name: RT-DETR Russian car plate detection with classification by type fine tuned with pytorch lighting |
|
results: [] |
|
--- |
|
|
|
## Model description |
|
|
|
Модель детекции номерных знаков автомобилей РФ, в данный момент 2 класса n_p и p_p, обычные номера и полицейские |
|
|
|
## Intended uses & limitations |
|
|
|
Пример использования: |
|
<pre> |
|
from transformers import AutoModelForObjectDetection, AutoImageProcessor |
|
import torch |
|
import supervision as sv |
|
|
|
|
|
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = AutoModelForObjectDetection.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector_lightning').to(DEVICE) |
|
processor = AutoImageProcessor.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector_lightning') |
|
|
|
path = 'path/to/image' |
|
image = Image.open(path) |
|
inputs = processor(image, return_tensors="pt").to(DEVICE) |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
w, h = image.size |
|
results = processor.post_process_object_detection( |
|
outputs, target_sizes=[(h, w)], threshold=0.3) |
|
detections = sv.Detections.from_transformers(results[0]).with_nms(0.3) |
|
labels = [ |
|
model.config.id2label[class_id] |
|
for class_id |
|
in detections.class_id |
|
] |
|
|
|
annotated_image = image.copy() |
|
annotated_image = sv.BoundingBoxAnnotator().annotate(annotated_image, detections) |
|
annotated_image = sv.LabelAnnotator().annotate(annotated_image, detections, labels=labels) |
|
|
|
grid = sv.create_tiles( |
|
[annotated_image], |
|
grid_size=(1, 1), |
|
single_tile_size=(512, 512), |
|
tile_padding_color=sv.Color.WHITE, |
|
tile_margin_color=sv.Color.WHITE |
|
) |
|
sv.plot_image(grid, size=(10, 10)) |
|
</pre> |
|
|
|
## Training and evaluation data |
|
|
|
Обучал на своём датасете - https://universe.roboflow.com/testcarplate/russian-license-plates-classification-by-this-type |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- seed: 42 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 300 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
Пока не разобрался, как при дообучении лайтингом автоматом всё отправить сюда |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.0.dev0 |
|
- Pytorch 2.5.0+cu124 |
|
- Tokenizers 0.20.1 |