Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,86 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
language:
|
4 |
+
- ru
|
5 |
+
license: apache-2.0
|
6 |
+
base_model: PekingU/rtdetr_r50vd_coco_o365
|
7 |
+
tags:
|
8 |
+
- object-detection
|
9 |
+
- pytorch-lightning
|
10 |
+
- russian-license-plates
|
11 |
+
- rt-detr
|
12 |
+
model-index:
|
13 |
+
- name: RT-DETR Russian car plate detection with classification by type fine tuned with pytorch lighting
|
14 |
+
results: []
|
15 |
---
|
16 |
|
17 |
+
## Model description
|
18 |
+
|
19 |
+
Модель детекции номерных знаков автомобилей РФ, в данный момент 2 класса n_p и p_p, обычные номера и полицейские
|
20 |
+
|
21 |
+
## Intended uses & limitations
|
22 |
+
|
23 |
+
Пример использования:
|
24 |
+
<pre>
|
25 |
+
from transformers import AutoModelForObjectDetection, AutoImageProcessor
|
26 |
+
import torch
|
27 |
+
import supervision as sv
|
28 |
+
|
29 |
+
|
30 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
+
model = AutoModelForObjectDetection.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector_lightning').to(DEVICE)
|
32 |
+
processor = AutoImageProcessor.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector_lightning')
|
33 |
+
|
34 |
+
path = 'path/to/image'
|
35 |
+
image = Image.open(path)
|
36 |
+
inputs = processor(image, return_tensors="pt").to(DEVICE)
|
37 |
+
with torch.no_grad():
|
38 |
+
outputs = model(**inputs)
|
39 |
+
w, h = image.size
|
40 |
+
results = processor.post_process_object_detection(
|
41 |
+
outputs, target_sizes=[(h, w)], threshold=0.3)
|
42 |
+
detections = sv.Detections.from_transformers(results[0]).with_nms(0.3)
|
43 |
+
labels = [
|
44 |
+
model.config.id2label[class_id]
|
45 |
+
for class_id
|
46 |
+
in detections.class_id
|
47 |
+
]
|
48 |
+
|
49 |
+
annotated_image = image.copy()
|
50 |
+
annotated_image = sv.BoundingBoxAnnotator().annotate(annotated_image, detections)
|
51 |
+
annotated_image = sv.LabelAnnotator().annotate(annotated_image, detections, labels=labels)
|
52 |
+
|
53 |
+
grid = sv.create_tiles(
|
54 |
+
[annotated_image],
|
55 |
+
grid_size=(1, 1),
|
56 |
+
single_tile_size=(512, 512),
|
57 |
+
tile_padding_color=sv.Color.WHITE,
|
58 |
+
tile_margin_color=sv.Color.WHITE
|
59 |
+
)
|
60 |
+
sv.plot_image(grid, size=(10, 10))
|
61 |
+
</pre>
|
62 |
+
|
63 |
+
## Training and evaluation data
|
64 |
+
|
65 |
+
Обучал на своём датасете - https://universe.roboflow.com/testcarplate/russian-license-plates-classification-by-this-type
|
66 |
+
|
67 |
+
## Training procedure
|
68 |
+
|
69 |
+
### Training hyperparameters
|
70 |
+
|
71 |
+
The following hyperparameters were used during training:
|
72 |
+
- learning_rate: 5e-05
|
73 |
+
- train_batch_size: 32
|
74 |
+
- seed: 42
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- lr_scheduler_warmup_steps: 300
|
77 |
+
- num_epochs: 20
|
78 |
+
|
79 |
+
### Training results
|
80 |
+
Пока не разобрался, как при дообучении лайтингом автоматом всё отправить сюда
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.46.0.dev0
|
85 |
+
- Pytorch 2.5.0+cu124
|
86 |
+
- Tokenizers 0.20.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|