|
--- |
|
base_model: distil-whisper/distil-large-v3 |
|
datasets: |
|
- Gabi00/english-mistakes |
|
language: |
|
- eng |
|
library_name: peft |
|
license: apache-2.0 |
|
metrics: |
|
- wer |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: Whisper Small Eng - Gabriel Mora |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: English-mistakes |
|
type: Gabi00/english-mistakes |
|
config: default |
|
split: validation |
|
args: 'config: eng, split: test' |
|
metrics: |
|
- type: wer |
|
value: 18.233650721249788 |
|
name: Wer |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small Eng - Gabriel Mora |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the English-mistakes dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6550 |
|
- Wer: 18.2337 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 28 |
|
- eval_batch_size: 28 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- training_steps: 100000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:-----:|:---------------:|:-------:| |
|
| 1.5085 | 0.4444 | 500 | 1.1844 | 25.9507 | |
|
| 1.1717 | 0.8889 | 1000 | 0.9522 | 25.2751 | |
|
| 1.1302 | 1.3333 | 1500 | 0.8634 | 22.0879 | |
|
| 1.0094 | 1.7778 | 2000 | 0.8098 | 21.0103 | |
|
| 1.0509 | 2.2222 | 2500 | 0.7784 | 23.2054 | |
|
| 0.9722 | 2.6667 | 3000 | 0.7555 | 21.5206 | |
|
| 0.9562 | 3.1111 | 3500 | 0.7401 | 21.0075 | |
|
| 0.9995 | 3.5556 | 4000 | 0.7269 | 19.8985 | |
|
| 0.9497 | 4.0 | 4500 | 0.7170 | 19.3626 | |
|
| 0.8703 | 4.4444 | 5000 | 0.7078 | 19.4652 | |
|
| 1.0015 | 4.8889 | 5500 | 0.7004 | 20.1608 | |
|
| 0.9248 | 5.3333 | 6000 | 0.6947 | 17.7034 | |
|
| 0.9163 | 5.7778 | 6500 | 0.6880 | 17.4953 | |
|
| 0.8833 | 6.2222 | 7000 | 0.6823 | 17.4668 | |
|
| 0.9051 | 6.6667 | 7500 | 0.6770 | 17.4554 | |
|
| 0.8882 | 7.1111 | 8000 | 0.6730 | 17.3613 | |
|
| 0.8879 | 7.5556 | 8500 | 0.6684 | 18.3220 | |
|
| 0.8396 | 8.0 | 9000 | 0.6647 | 18.2165 | |
|
| 0.9282 | 8.4444 | 9500 | 0.6616 | 18.4646 | |
|
| 0.8581 | 8.8889 | 10000 | 0.6578 | 18.1538 | |
|
| 0.8938 | 9.3333 | 10500 | 0.6550 | 18.2337 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.42.3 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |