--- base_model: distil-whisper/distil-large-v3 datasets: - Gabi00/english-mistakes language: - eng library_name: peft license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: Whisper Small Eng - Gabriel Mora results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: English-mistakes type: Gabi00/english-mistakes config: default split: validation args: 'config: eng, split: test' metrics: - type: wer value: 18.233650721249788 name: Wer --- # Whisper Small Eng - Gabriel Mora This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the English-mistakes dataset. It achieves the following results on the evaluation set: - Loss: 0.6550 - Wer: 18.2337 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 28 - eval_batch_size: 28 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 100000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 1.5085 | 0.4444 | 500 | 1.1844 | 25.9507 | | 1.1717 | 0.8889 | 1000 | 0.9522 | 25.2751 | | 1.1302 | 1.3333 | 1500 | 0.8634 | 22.0879 | | 1.0094 | 1.7778 | 2000 | 0.8098 | 21.0103 | | 1.0509 | 2.2222 | 2500 | 0.7784 | 23.2054 | | 0.9722 | 2.6667 | 3000 | 0.7555 | 21.5206 | | 0.9562 | 3.1111 | 3500 | 0.7401 | 21.0075 | | 0.9995 | 3.5556 | 4000 | 0.7269 | 19.8985 | | 0.9497 | 4.0 | 4500 | 0.7170 | 19.3626 | | 0.8703 | 4.4444 | 5000 | 0.7078 | 19.4652 | | 1.0015 | 4.8889 | 5500 | 0.7004 | 20.1608 | | 0.9248 | 5.3333 | 6000 | 0.6947 | 17.7034 | | 0.9163 | 5.7778 | 6500 | 0.6880 | 17.4953 | | 0.8833 | 6.2222 | 7000 | 0.6823 | 17.4668 | | 0.9051 | 6.6667 | 7500 | 0.6770 | 17.4554 | | 0.8882 | 7.1111 | 8000 | 0.6730 | 17.3613 | | 0.8879 | 7.5556 | 8500 | 0.6684 | 18.3220 | | 0.8396 | 8.0 | 9000 | 0.6647 | 18.2165 | | 0.9282 | 8.4444 | 9500 | 0.6616 | 18.4646 | | 0.8581 | 8.8889 | 10000 | 0.6578 | 18.1538 | | 0.8938 | 9.3333 | 10500 | 0.6550 | 18.2337 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.1.0+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1