EvaByte-SFT / eva.py
linzheng's picture
Upload EvaByteForCausalLM
474addc verified
raw
history blame
18.5 kB
from typing import Dict, Optional, Tuple, List, Any, Union
import torch
from torch import nn
import torch.nn.functional as F
from .eva_agg_kernel import triton_eva_agg_fwd
from .eva_prep_kv_kernel import triton_eva_prep_kv_fwd
try:
import triton
USE_TRITON_IMPL = True
except ImportError:
USE_TRITON_IMPL = False
raise ImportError("Triton is not installed. Please install it by running `pip install triton`.")
def rotate_half(x: torch.Tensor) -> torch.Tensor:
"""
Rotates half the hidden dims (last dim) of the input.
Args:
x: Rotary embedded tensor
Return:
Tensor with half of last dim negated and rotated to the front.
"""
x1, x2 = x.split(x.shape[-1] // 2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor,
position_ids: torch.Tensor) -> torch.Tensor:
"""
Apply rotary embedding (cos, sin) to the query and key tensor on the sequence dimension.
The legends for dimensions are defined as:
num_heads: number of attention heads
current_seq_len: the current batch's sequence length, should be either 1 or max_seq_len
max_seq_len: the static sequence length, different from current_seq_len in cached inference case where it is always
maximum lenghth, e.g. the length of static sequence length of KV cache
Args:
q: Query tensor, of size (batch_size, num_heads, current_seq_len, head_dim)
k: Key tensor, of size (batch_size, num_key_value_heads, current_seq_len, head_dim)
cos: Cosine base of rotary embedding, of size (max_seq_len, head_dim)
sin: Sine base of rotary embedding, of size (max_seq_len, head_dim)
position_ids: The position indices of the tokens corresponding to the query and key tensors. It has a size of
(batch_size, current_seq_len).
Returns:
Embedded query and key tensor of same size as input.
"""
bs, nheads, cur_seq_len, head_dim = q.shape
assert len(
k.shape) == 4, f"k should be of shape (batch_size, num_heads, current_seq_len, head_dim), got {k.shape} instead"
assert k.shape[0] == bs, f"k has a different batch_size {k.shape[0]} compared to q {bs}"
assert list(k.shape[2:]) == [cur_seq_len,
head_dim], f"k has different current_seq_len and/or head_dim compared to q"
assert cos.shape[3] == head_dim, f"cos should have dim of head dim {head_dim}, got {cos.shape[3]} instead"
assert list(position_ids.shape) in [[bs, cur_seq_len], [1, cur_seq_len]],\
f"position_ids should be of shape {[bs, cur_seq_len]} or {[1, cur_seq_len]}, got {position_ids.shape} instead"
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class EvaAttention(nn.Module):
"""
Causal EVA for language modeling.
"""
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.head_dim_scaling = self.head_dim ** -0.5
self.max_position_embeddings = config.max_position_embeddings
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.window_size = config.window_size
self.num_chunks = config.num_chunks
self.chunk_size = config.chunk_size
if self.chunk_size is not None:
assert self.window_size >= self.chunk_size and self.window_size % self.chunk_size == 0
# chunk_size overrides the number of landmarks
self.num_chunks = None
self.chunks_per_window = int(self.window_size // self.chunk_size)
self.adaptive_phi = nn.Parameter(
torch.randn(
1,
self.num_heads,
1,
1,
self.head_dim
).clamp(-1., 1.) * self.head_dim_scaling
)
self.adaptive_mu_k = nn.Parameter(
torch.randn(
1,
self.num_heads,
1,
1,
self.head_dim
).clamp(-1., 1.) * self.head_dim_scaling
)
def _triton_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cos: Optional[torch.Tensor] = None,
sin: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
assert not output_attentions
bsz, q_len, _ = hidden_states.size()
if use_cache and past_key_value is None:
raise ValueError
assert isinstance(attention_mask, tuple)
# infer the model's running mode
is_prefilling = use_cache and past_key_value.get_seq_length(self.layer_idx) == 0
is_decoding = use_cache and past_key_value.get_seq_length(self.layer_idx) > 0
if is_prefilling:
assert len(attention_mask) == 2
window_mask, intra_chunk_mask = attention_mask
chunk_dummpy_mask = None
elif is_decoding:
assert len(attention_mask) == 3
window_mask, intra_chunk_mask, chunk_dummpy_mask = attention_mask
else:
window_mask, intra_chunk_mask = attention_mask
chunk_dummpy_mask = None
############################################
# compute q, k, v from hidden states
############################################
# [b, h, q_len, d]
q = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# [b, h, kv_len, d]
k = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# [b, h, kv_len, d]
v = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
if use_cache:
past_key_value.update_past_len(q.shape[-2], self.layer_idx)
############################################
# apply rotary positional embeddings to q, k
############################################
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
############################################
# update and get cached singleton tokens
# update and cache k and v for calculating chunk-level RFAs
############################################
if use_cache:
s_k, s_v, dump_k, dump_v = past_key_value.update_singletons_and_chunks(
k,
v,
self.layer_idx,
self.window_size,
)
else:
s_k, s_v = k, v
dump_k, dump_v = k, v
if use_cache:
singleton_mask, dump_rf_mask = past_key_value.update_mask(
s_mask=window_mask,
rf_mask=intra_chunk_mask,
layer_idx=self.layer_idx,
window_size=self.window_size,
)
else:
singleton_mask = window_mask
dump_rf_mask = intra_chunk_mask
if dump_k is not None and dump_v is not None:
# 1. in prefilling, the input shape is
# dump_k/dump_v: [b, h, n, d]
# rfa_k/rfa_v: [b, h, n // c, d]
# 2. in decoding, the input shape is
# k/v: [b, h, w, d]
# rfa_k/rfa_v: [b, h, w//c, d]
# 3. in forward inference; the seq_len is already divisible
rfa_k, rfa_v = triton_eva_prep_kv_fwd(
dump_k, dump_v,
self.adaptive_mu_k, self.adaptive_phi,
dump_rf_mask, self.head_dim_scaling, self.chunk_size
)
# rfa_mask = get_rfa_chunk_mask(dump_rf_mask)
if use_cache:
rfa_k, rfa_v = past_key_value.update_chunk_rfas(
rfa_k, rfa_v, self.layer_idx
)
elif use_cache:
# if there are not enough elements within the last chunk,
# we will only use the cached chunk-level RFAs
rfa_k, rfa_v = past_key_value.get_chunk_rfas(self.layer_idx)
else:
rfa_k, rfa_v = None, None
############################################
# compute the full attention output
############################################
if is_prefilling:
# prefilling
# 1. in prefilling, the input shape is
# q: [b, h, n, d]
# k/v: [b, h, n, d]
# rfa_k/rfa_v: [b, h, n // c, d]
attn_output = triton_eva_agg_fwd(
q, s_k, s_v,
rfa_k, rfa_v,
singleton_mask, self.head_dim_scaling, self.window_size, self.chunks_per_window
)
elif is_decoding:
# 2. in decoding, the input shape is
# q: [b, h, 1, d] or [b, h, z, d] (for multi-byte prediction)
# k/v: [b, h, 1 + s, d]
# rfa_k/rfa_v: [b, h, n // c, d]
if rfa_k is not None and rfa_v is not None:
# we only take the chunk-level RFAs not in the current window
seen_seq_len = past_key_value.get_seq_length(self.layer_idx)
if seen_seq_len <= self.window_size:
agg_k = s_k
agg_v = s_v
attn_mask = singleton_mask
else:
# NOTE: we already updated the cache so the length now
# includes the current token
# we subtract 1 from seen_seq_len because we want
# if seen_seq_len = 2048 -> num_windows_seen_so_far = 0
# if seen_seq_len = 4096 -> num_windows_seen_so_far = 1
# if seen_seq_len = 4097 -> num_windows_seen_so_far = 2
# NOTE the cat order should be taken care of;
# should align with the order based on which
# the attention mask is constructed
num_windows_seen_so_far = (seen_seq_len - 1) // self.window_size
agg_k = torch.cat([s_k, rfa_k[..., :num_windows_seen_so_far * self.chunks_per_window, :]], dim=-2)
agg_v = torch.cat([s_v, rfa_v[..., :num_windows_seen_so_far * self.chunks_per_window, :]], dim=-2)
if singleton_mask is not None:
assert chunk_dummpy_mask is not None
attn_mask = torch.cat([singleton_mask, chunk_dummpy_mask], dim=-1)
else:
attn_mask = singleton_mask
else:
agg_k = s_k
agg_v = s_v
attn_mask = singleton_mask
attn_output = F.scaled_dot_product_attention(
q, agg_k, agg_v,
attn_mask=attn_mask,
is_causal=False,
dropout_p=0.0,
scale=self.head_dim_scaling
)
else:
# 3. in single-forward inference
attn_output = triton_eva_agg_fwd(
q, s_k, s_v,
rfa_k, rfa_v,
singleton_mask, self.head_dim_scaling, self.window_size, self.chunks_per_window
)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
attn_weights = None
return attn_output, attn_weights, past_key_value
def _multibyte_decoding_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cos: Optional[torch.Tensor] = None,
sin: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# during multi-byte forwarding, we only read caches and do not update them
assert not output_attentions
bsz, q_len, _ = hidden_states.size()
if use_cache and past_key_value is None:
raise ValueError
assert USE_TRITON_IMPL
assert isinstance(attention_mask, torch.Tensor) and attention_mask.dtype == torch.bool
assert use_cache and past_key_value.get_seq_length(self.layer_idx) > 0
############################################
# compute q, k, v from hidden states
############################################
# [b, h, q_len, d]
q = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# [b, h, kv_len, d]
k = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# [b, h, kv_len, d]
v = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
############################################
# apply rotary positional embeddings to q, k
############################################
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
############################################
# update and get cached singleton tokens
############################################
input_len = k.shape[-2]
window_pos = past_key_value.past_window_pos[self.layer_idx]
new_window_pos = window_pos + input_len
past_key_value.past_window_k[self.layer_idx][:, :, window_pos : new_window_pos, :] = k
past_key_value.past_window_v[self.layer_idx][:, :, window_pos : new_window_pos, :] = v
s_k = past_key_value.past_window_k[self.layer_idx][:, :, : new_window_pos, :]
s_v = past_key_value.past_window_v[self.layer_idx][:, :, : new_window_pos, :]
rfa_k, rfa_v = past_key_value.get_chunk_rfas(self.layer_idx)
############################################
# compute the full attention output
############################################
# 2. in decoding, the input shape is
# q: [b, h, 1, d] or [b, h, z, d] (for multi-byte prediction)
# k/v: [b, h, 1 + s, d]
# rfa_k/rfa_v: [b, h, n // c, d]
if rfa_k is not None and rfa_v is not None:
# NOTE the cat order should be taken care of;
# should align with the order based on which
# the attention mask is constructed
# agg_k = torch.cat([s_k, rfa_k], dim=-2)
# agg_v = torch.cat([s_v, rfa_v], dim=-2)
agg_k = torch.cat([rfa_k, s_k], dim=-2)
agg_v = torch.cat([rfa_v, s_v], dim=-2)
else:
agg_k = s_k
agg_v = s_v
attn_output = F.scaled_dot_product_attention(
q, agg_k, agg_v,
attn_mask=attention_mask,
is_causal=False,
dropout_p=0.0,
scale=self.head_dim_scaling
)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
attn_weights = None
return attn_output, attn_weights, past_key_value
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cos: Optional[torch.Tensor] = None,
sin: Optional[torch.Tensor] = None,
multibyte_decoding: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
assert not output_attentions
if use_cache and past_key_value is None:
raise ValueError
assert USE_TRITON_IMPL
if use_cache and multibyte_decoding:
return self._multibyte_decoding_forward(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cos=cos,
sin=sin,
)
else:
return self._triton_forward(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cos=cos,
sin=sin,
)