Upload EvaByteForCausalLM
Browse files- README.md +199 -0
- config.json +48 -0
- configuration_evabyte.py +99 -0
- eva.py +419 -0
- eva_agg_kernel.py +469 -0
- eva_cache.py +761 -0
- eva_prep_kv_kernel.py +357 -0
- eva_pt_ref.py +422 -0
- generation_config.json +7 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +362 -0
- modeling_evabyte.py +1092 -0
- multibyte_decoding_evabyte.py +881 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": null,
|
3 |
+
"architectures": [
|
4 |
+
"EvaByteForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_class": "eva",
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "configuration_evabyte.EvaByteConfig",
|
11 |
+
"AutoModelForCausalLM": "modeling_evabyte.EvaByteForCausalLM"
|
12 |
+
},
|
13 |
+
"bos_token_id": 1,
|
14 |
+
"chunk_size": 16,
|
15 |
+
"eos_token_id": 11,
|
16 |
+
"fp32_ln": false,
|
17 |
+
"fp32_logits": true,
|
18 |
+
"fp32_skip_add": true,
|
19 |
+
"hidden_act": "silu",
|
20 |
+
"hidden_size": 4096,
|
21 |
+
"init_cutoff_factor": null,
|
22 |
+
"init_fn": "v2",
|
23 |
+
"init_std": 0.01275,
|
24 |
+
"initializer_range": 0.01275,
|
25 |
+
"intermediate_size": 11008,
|
26 |
+
"lazy_init": true,
|
27 |
+
"max_position_embeddings": 32768,
|
28 |
+
"max_seq_length": 32768,
|
29 |
+
"mixedp_attn": true,
|
30 |
+
"model_type": "evabyte",
|
31 |
+
"norm_add_unit_offset": true,
|
32 |
+
"num_attention_heads": 32,
|
33 |
+
"num_chunks": null,
|
34 |
+
"num_hidden_layers": 32,
|
35 |
+
"num_key_value_heads": 32,
|
36 |
+
"num_pred_heads": 8,
|
37 |
+
"pad_token_id": 0,
|
38 |
+
"return_dict": false,
|
39 |
+
"rms_norm_eps": 1e-05,
|
40 |
+
"rope_scaling": null,
|
41 |
+
"rope_theta": 100000,
|
42 |
+
"tie_word_embeddings": false,
|
43 |
+
"torch_dtype": "bfloat16",
|
44 |
+
"transformers_version": "4.47.1",
|
45 |
+
"use_cache": true,
|
46 |
+
"vocab_size": 320,
|
47 |
+
"window_size": 2048
|
48 |
+
}
|
configuration_evabyte.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" EvaByte configuration"""
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
|
5 |
+
class EvaByteConfig(PretrainedConfig):
|
6 |
+
model_type = "evabyte"
|
7 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
vocab_size=320,
|
12 |
+
hidden_size=4096,
|
13 |
+
intermediate_size=11008,
|
14 |
+
num_hidden_layers=32,
|
15 |
+
num_attention_heads=32,
|
16 |
+
num_key_value_heads=None,
|
17 |
+
hidden_act="silu",
|
18 |
+
max_position_embeddings=2048,
|
19 |
+
initializer_range=0.02,
|
20 |
+
rms_norm_eps=1e-6,
|
21 |
+
use_cache=True,
|
22 |
+
pad_token_id=None,
|
23 |
+
bos_token_id=1,
|
24 |
+
eos_token_id=2,
|
25 |
+
tie_word_embeddings=False,
|
26 |
+
rope_theta=10000.0,
|
27 |
+
rope_scaling=None,
|
28 |
+
attention_bias=False,
|
29 |
+
attention_dropout=0.0,
|
30 |
+
norm_add_unit_offset=False,
|
31 |
+
init_fn="mitchell",
|
32 |
+
init_std=0.006,
|
33 |
+
init_cutoff_factor=None,
|
34 |
+
attention_class="mha",
|
35 |
+
window_size=512,
|
36 |
+
num_chunks=None,
|
37 |
+
chunk_size=256,
|
38 |
+
**kwargs,
|
39 |
+
):
|
40 |
+
self.vocab_size = vocab_size
|
41 |
+
self.max_position_embeddings = max_position_embeddings
|
42 |
+
self.hidden_size = hidden_size
|
43 |
+
self.intermediate_size = intermediate_size
|
44 |
+
self.num_hidden_layers = num_hidden_layers
|
45 |
+
self.num_attention_heads = num_attention_heads
|
46 |
+
|
47 |
+
# for backward compatibility
|
48 |
+
if num_key_value_heads is None:
|
49 |
+
num_key_value_heads = num_attention_heads
|
50 |
+
|
51 |
+
self.num_key_value_heads = num_key_value_heads
|
52 |
+
self.hidden_act = hidden_act
|
53 |
+
self.initializer_range = initializer_range
|
54 |
+
self.rms_norm_eps = rms_norm_eps
|
55 |
+
self.use_cache = use_cache
|
56 |
+
self.rope_theta = rope_theta
|
57 |
+
self.rope_scaling = rope_scaling
|
58 |
+
self._rope_scaling_validation()
|
59 |
+
self.attention_bias = attention_bias
|
60 |
+
self.attention_dropout = attention_dropout
|
61 |
+
|
62 |
+
self.norm_add_unit_offset = norm_add_unit_offset
|
63 |
+
self.init_fn = init_fn
|
64 |
+
self.init_std = init_std
|
65 |
+
self.init_cutoff_factor = init_cutoff_factor
|
66 |
+
|
67 |
+
# Attention-specific paramters
|
68 |
+
self.attention_class = attention_class
|
69 |
+
self.window_size = window_size
|
70 |
+
self.num_chunks = num_chunks
|
71 |
+
self.chunk_size = chunk_size
|
72 |
+
|
73 |
+
super().__init__(
|
74 |
+
pad_token_id=pad_token_id,
|
75 |
+
bos_token_id=bos_token_id,
|
76 |
+
eos_token_id=eos_token_id,
|
77 |
+
tie_word_embeddings=tie_word_embeddings,
|
78 |
+
**kwargs,
|
79 |
+
)
|
80 |
+
|
81 |
+
def _rope_scaling_validation(self):
|
82 |
+
"""
|
83 |
+
Validate the `rope_scaling` configuration.
|
84 |
+
"""
|
85 |
+
if self.rope_scaling is None:
|
86 |
+
return
|
87 |
+
|
88 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
89 |
+
raise ValueError(
|
90 |
+
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
91 |
+
)
|
92 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
93 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
94 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
95 |
+
raise ValueError(
|
96 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
97 |
+
)
|
98 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
99 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
eva.py
ADDED
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Optional, Tuple, List, Any, Union
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from .eva_agg_kernel import triton_eva_agg_fwd
|
6 |
+
from .eva_prep_kv_kernel import triton_eva_prep_kv_fwd
|
7 |
+
try:
|
8 |
+
import triton
|
9 |
+
USE_TRITON_IMPL = True
|
10 |
+
except ImportError:
|
11 |
+
USE_TRITON_IMPL = False
|
12 |
+
raise ImportError("Triton is not installed. Please install it by running `pip install triton`.")
|
13 |
+
|
14 |
+
def rotate_half(x: torch.Tensor) -> torch.Tensor:
|
15 |
+
"""
|
16 |
+
Rotates half the hidden dims (last dim) of the input.
|
17 |
+
Args:
|
18 |
+
x: Rotary embedded tensor
|
19 |
+
Return:
|
20 |
+
Tensor with half of last dim negated and rotated to the front.
|
21 |
+
"""
|
22 |
+
x1, x2 = x.split(x.shape[-1] // 2, dim=-1)
|
23 |
+
return torch.cat((-x2, x1), dim=-1)
|
24 |
+
|
25 |
+
def apply_rotary_pos_emb(q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor,
|
26 |
+
position_ids: torch.Tensor) -> torch.Tensor:
|
27 |
+
"""
|
28 |
+
Apply rotary embedding (cos, sin) to the query and key tensor on the sequence dimension.
|
29 |
+
|
30 |
+
The legends for dimensions are defined as:
|
31 |
+
num_heads: number of attention heads
|
32 |
+
current_seq_len: the current batch's sequence length, should be either 1 or max_seq_len
|
33 |
+
max_seq_len: the static sequence length, different from current_seq_len in cached inference case where it is always
|
34 |
+
maximum lenghth, e.g. the length of static sequence length of KV cache
|
35 |
+
|
36 |
+
|
37 |
+
Args:
|
38 |
+
q: Query tensor, of size (batch_size, num_heads, current_seq_len, head_dim)
|
39 |
+
k: Key tensor, of size (batch_size, num_key_value_heads, current_seq_len, head_dim)
|
40 |
+
cos: Cosine base of rotary embedding, of size (max_seq_len, head_dim)
|
41 |
+
sin: Sine base of rotary embedding, of size (max_seq_len, head_dim)
|
42 |
+
position_ids: The position indices of the tokens corresponding to the query and key tensors. It has a size of
|
43 |
+
(batch_size, current_seq_len).
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
Embedded query and key tensor of same size as input.
|
47 |
+
|
48 |
+
"""
|
49 |
+
bs, nheads, cur_seq_len, head_dim = q.shape
|
50 |
+
assert len(
|
51 |
+
k.shape) == 4, f"k should be of shape (batch_size, num_heads, current_seq_len, head_dim), got {k.shape} instead"
|
52 |
+
assert k.shape[0] == bs, f"k has a different batch_size {k.shape[0]} compared to q {bs}"
|
53 |
+
assert list(k.shape[2:]) == [cur_seq_len,
|
54 |
+
head_dim], f"k has different current_seq_len and/or head_dim compared to q"
|
55 |
+
assert cos.shape[3] == head_dim, f"cos should have dim of head dim {head_dim}, got {cos.shape[3]} instead"
|
56 |
+
assert list(position_ids.shape) in [[bs, cur_seq_len], [1, cur_seq_len]],\
|
57 |
+
f"position_ids should be of shape {[bs, cur_seq_len]} or {[1, cur_seq_len]}, got {position_ids.shape} instead"
|
58 |
+
|
59 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
60 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
61 |
+
return q_embed, k_embed
|
62 |
+
|
63 |
+
class EvaAttention(nn.Module):
|
64 |
+
"""
|
65 |
+
Causal EVA for language modeling.
|
66 |
+
"""
|
67 |
+
|
68 |
+
def __init__(self, config, layer_idx: Optional[int] = None):
|
69 |
+
super().__init__()
|
70 |
+
self.config = config
|
71 |
+
self.layer_idx = layer_idx
|
72 |
+
self.hidden_size = config.hidden_size
|
73 |
+
self.num_heads = config.num_attention_heads
|
74 |
+
self.head_dim = self.hidden_size // self.num_heads
|
75 |
+
self.head_dim_scaling = self.head_dim ** -0.5
|
76 |
+
|
77 |
+
self.max_position_embeddings = config.max_position_embeddings
|
78 |
+
|
79 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
80 |
+
raise ValueError(
|
81 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
82 |
+
f" and `num_heads`: {self.num_heads})."
|
83 |
+
)
|
84 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
85 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
86 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
87 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
88 |
+
|
89 |
+
self.window_size = config.window_size
|
90 |
+
|
91 |
+
self.num_chunks = config.num_chunks
|
92 |
+
self.chunk_size = config.chunk_size
|
93 |
+
if self.chunk_size is not None:
|
94 |
+
assert self.window_size >= self.chunk_size and self.window_size % self.chunk_size == 0
|
95 |
+
# chunk_size overrides the number of landmarks
|
96 |
+
self.num_chunks = None
|
97 |
+
|
98 |
+
self.chunks_per_window = int(self.window_size // self.chunk_size)
|
99 |
+
self.adaptive_phi = nn.Parameter(
|
100 |
+
torch.randn(
|
101 |
+
1,
|
102 |
+
self.num_heads,
|
103 |
+
1,
|
104 |
+
1,
|
105 |
+
self.head_dim
|
106 |
+
).clamp(-1., 1.) * self.head_dim_scaling
|
107 |
+
)
|
108 |
+
self.adaptive_mu_k = nn.Parameter(
|
109 |
+
torch.randn(
|
110 |
+
1,
|
111 |
+
self.num_heads,
|
112 |
+
1,
|
113 |
+
1,
|
114 |
+
self.head_dim
|
115 |
+
).clamp(-1., 1.) * self.head_dim_scaling
|
116 |
+
)
|
117 |
+
|
118 |
+
def _triton_forward(
|
119 |
+
self,
|
120 |
+
hidden_states: torch.Tensor,
|
121 |
+
attention_mask: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None,
|
122 |
+
position_ids: Optional[torch.LongTensor] = None,
|
123 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
124 |
+
output_attentions: bool = False,
|
125 |
+
use_cache: bool = False,
|
126 |
+
cos: Optional[torch.Tensor] = None,
|
127 |
+
sin: Optional[torch.Tensor] = None,
|
128 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
129 |
+
assert not output_attentions
|
130 |
+
bsz, q_len, _ = hidden_states.size()
|
131 |
+
|
132 |
+
if use_cache and past_key_value is None:
|
133 |
+
raise ValueError
|
134 |
+
|
135 |
+
assert isinstance(attention_mask, tuple)
|
136 |
+
|
137 |
+
# infer the model's running mode
|
138 |
+
is_prefilling = use_cache and past_key_value.get_seq_length(self.layer_idx) == 0
|
139 |
+
is_decoding = use_cache and past_key_value.get_seq_length(self.layer_idx) > 0
|
140 |
+
|
141 |
+
if is_prefilling:
|
142 |
+
assert len(attention_mask) == 2
|
143 |
+
window_mask, intra_chunk_mask = attention_mask
|
144 |
+
chunk_dummpy_mask = None
|
145 |
+
elif is_decoding:
|
146 |
+
assert len(attention_mask) == 3
|
147 |
+
window_mask, intra_chunk_mask, chunk_dummpy_mask = attention_mask
|
148 |
+
else:
|
149 |
+
window_mask, intra_chunk_mask = attention_mask
|
150 |
+
chunk_dummpy_mask = None
|
151 |
+
|
152 |
+
############################################
|
153 |
+
# compute q, k, v from hidden states
|
154 |
+
############################################
|
155 |
+
# [b, h, q_len, d]
|
156 |
+
q = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
157 |
+
# [b, h, kv_len, d]
|
158 |
+
k = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
159 |
+
# [b, h, kv_len, d]
|
160 |
+
v = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
161 |
+
|
162 |
+
if use_cache:
|
163 |
+
past_key_value.update_past_len(q.shape[-2], self.layer_idx)
|
164 |
+
|
165 |
+
############################################
|
166 |
+
# apply rotary positional embeddings to q, k
|
167 |
+
############################################
|
168 |
+
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
|
169 |
+
|
170 |
+
############################################
|
171 |
+
# update and get cached singleton tokens
|
172 |
+
# update and cache k and v for calculating chunk-level RFAs
|
173 |
+
############################################
|
174 |
+
if use_cache:
|
175 |
+
s_k, s_v, dump_k, dump_v = past_key_value.update_singletons_and_chunks(
|
176 |
+
k,
|
177 |
+
v,
|
178 |
+
self.layer_idx,
|
179 |
+
self.window_size,
|
180 |
+
)
|
181 |
+
else:
|
182 |
+
s_k, s_v = k, v
|
183 |
+
dump_k, dump_v = k, v
|
184 |
+
|
185 |
+
if use_cache:
|
186 |
+
singleton_mask, dump_rf_mask = past_key_value.update_mask(
|
187 |
+
s_mask=window_mask,
|
188 |
+
rf_mask=intra_chunk_mask,
|
189 |
+
layer_idx=self.layer_idx,
|
190 |
+
window_size=self.window_size,
|
191 |
+
)
|
192 |
+
else:
|
193 |
+
singleton_mask = window_mask
|
194 |
+
dump_rf_mask = intra_chunk_mask
|
195 |
+
|
196 |
+
if dump_k is not None and dump_v is not None:
|
197 |
+
# 1. in prefilling, the input shape is
|
198 |
+
# dump_k/dump_v: [b, h, n, d]
|
199 |
+
# rfa_k/rfa_v: [b, h, n // c, d]
|
200 |
+
# 2. in decoding, the input shape is
|
201 |
+
# k/v: [b, h, w, d]
|
202 |
+
# rfa_k/rfa_v: [b, h, w//c, d]
|
203 |
+
# 3. in forward inference; the seq_len is already divisible
|
204 |
+
rfa_k, rfa_v = triton_eva_prep_kv_fwd(
|
205 |
+
dump_k, dump_v,
|
206 |
+
self.adaptive_mu_k, self.adaptive_phi,
|
207 |
+
dump_rf_mask, self.head_dim_scaling, self.chunk_size
|
208 |
+
)
|
209 |
+
# rfa_mask = get_rfa_chunk_mask(dump_rf_mask)
|
210 |
+
if use_cache:
|
211 |
+
rfa_k, rfa_v = past_key_value.update_chunk_rfas(
|
212 |
+
rfa_k, rfa_v, self.layer_idx
|
213 |
+
)
|
214 |
+
elif use_cache:
|
215 |
+
# if there are not enough elements within the last chunk,
|
216 |
+
# we will only use the cached chunk-level RFAs
|
217 |
+
rfa_k, rfa_v = past_key_value.get_chunk_rfas(self.layer_idx)
|
218 |
+
else:
|
219 |
+
rfa_k, rfa_v = None, None
|
220 |
+
|
221 |
+
############################################
|
222 |
+
# compute the full attention output
|
223 |
+
############################################
|
224 |
+
if is_prefilling:
|
225 |
+
# prefilling
|
226 |
+
# 1. in prefilling, the input shape is
|
227 |
+
# q: [b, h, n, d]
|
228 |
+
# k/v: [b, h, n, d]
|
229 |
+
# rfa_k/rfa_v: [b, h, n // c, d]
|
230 |
+
attn_output = triton_eva_agg_fwd(
|
231 |
+
q, s_k, s_v,
|
232 |
+
rfa_k, rfa_v,
|
233 |
+
singleton_mask, self.head_dim_scaling, self.window_size, self.chunks_per_window
|
234 |
+
)
|
235 |
+
elif is_decoding:
|
236 |
+
# 2. in decoding, the input shape is
|
237 |
+
# q: [b, h, 1, d] or [b, h, z, d] (for multi-byte prediction)
|
238 |
+
# k/v: [b, h, 1 + s, d]
|
239 |
+
# rfa_k/rfa_v: [b, h, n // c, d]
|
240 |
+
if rfa_k is not None and rfa_v is not None:
|
241 |
+
# we only take the chunk-level RFAs not in the current window
|
242 |
+
seen_seq_len = past_key_value.get_seq_length(self.layer_idx)
|
243 |
+
if seen_seq_len <= self.window_size:
|
244 |
+
agg_k = s_k
|
245 |
+
agg_v = s_v
|
246 |
+
attn_mask = singleton_mask
|
247 |
+
else:
|
248 |
+
# NOTE: we already updated the cache so the length now
|
249 |
+
# includes the current token
|
250 |
+
# we subtract 1 from seen_seq_len because we want
|
251 |
+
# if seen_seq_len = 2048 -> num_windows_seen_so_far = 0
|
252 |
+
# if seen_seq_len = 4096 -> num_windows_seen_so_far = 1
|
253 |
+
# if seen_seq_len = 4097 -> num_windows_seen_so_far = 2
|
254 |
+
# NOTE the cat order should be taken care of;
|
255 |
+
# should align with the order based on which
|
256 |
+
# the attention mask is constructed
|
257 |
+
num_windows_seen_so_far = (seen_seq_len - 1) // self.window_size
|
258 |
+
agg_k = torch.cat([s_k, rfa_k[..., :num_windows_seen_so_far * self.chunks_per_window, :]], dim=-2)
|
259 |
+
agg_v = torch.cat([s_v, rfa_v[..., :num_windows_seen_so_far * self.chunks_per_window, :]], dim=-2)
|
260 |
+
if singleton_mask is not None:
|
261 |
+
assert chunk_dummpy_mask is not None
|
262 |
+
attn_mask = torch.cat([singleton_mask, chunk_dummpy_mask], dim=-1)
|
263 |
+
else:
|
264 |
+
attn_mask = singleton_mask
|
265 |
+
else:
|
266 |
+
agg_k = s_k
|
267 |
+
agg_v = s_v
|
268 |
+
attn_mask = singleton_mask
|
269 |
+
attn_output = F.scaled_dot_product_attention(
|
270 |
+
q, agg_k, agg_v,
|
271 |
+
attn_mask=attn_mask,
|
272 |
+
is_causal=False,
|
273 |
+
dropout_p=0.0,
|
274 |
+
scale=self.head_dim_scaling
|
275 |
+
)
|
276 |
+
else:
|
277 |
+
# 3. in single-forward inference
|
278 |
+
attn_output = triton_eva_agg_fwd(
|
279 |
+
q, s_k, s_v,
|
280 |
+
rfa_k, rfa_v,
|
281 |
+
singleton_mask, self.head_dim_scaling, self.window_size, self.chunks_per_window
|
282 |
+
)
|
283 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
284 |
+
raise ValueError(
|
285 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
286 |
+
f" {attn_output.size()}"
|
287 |
+
)
|
288 |
+
attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size)
|
289 |
+
attn_output = self.o_proj(attn_output)
|
290 |
+
attn_weights = None
|
291 |
+
return attn_output, attn_weights, past_key_value
|
292 |
+
|
293 |
+
def _multibyte_decoding_forward(
|
294 |
+
self,
|
295 |
+
hidden_states: torch.Tensor,
|
296 |
+
attention_mask: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None,
|
297 |
+
position_ids: Optional[torch.LongTensor] = None,
|
298 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
299 |
+
output_attentions: bool = False,
|
300 |
+
use_cache: bool = False,
|
301 |
+
cos: Optional[torch.Tensor] = None,
|
302 |
+
sin: Optional[torch.Tensor] = None,
|
303 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
304 |
+
# during multi-byte forwarding, we only read caches and do not update them
|
305 |
+
assert not output_attentions
|
306 |
+
bsz, q_len, _ = hidden_states.size()
|
307 |
+
|
308 |
+
if use_cache and past_key_value is None:
|
309 |
+
raise ValueError
|
310 |
+
|
311 |
+
assert USE_TRITON_IMPL
|
312 |
+
assert isinstance(attention_mask, torch.Tensor) and attention_mask.dtype == torch.bool
|
313 |
+
|
314 |
+
assert use_cache and past_key_value.get_seq_length(self.layer_idx) > 0
|
315 |
+
|
316 |
+
############################################
|
317 |
+
# compute q, k, v from hidden states
|
318 |
+
############################################
|
319 |
+
# [b, h, q_len, d]
|
320 |
+
q = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
321 |
+
# [b, h, kv_len, d]
|
322 |
+
k = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
323 |
+
# [b, h, kv_len, d]
|
324 |
+
v = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
325 |
+
|
326 |
+
############################################
|
327 |
+
# apply rotary positional embeddings to q, k
|
328 |
+
############################################
|
329 |
+
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
|
330 |
+
|
331 |
+
############################################
|
332 |
+
# update and get cached singleton tokens
|
333 |
+
############################################
|
334 |
+
input_len = k.shape[-2]
|
335 |
+
window_pos = past_key_value.past_window_pos[self.layer_idx]
|
336 |
+
new_window_pos = window_pos + input_len
|
337 |
+
|
338 |
+
past_key_value.past_window_k[self.layer_idx][:, :, window_pos : new_window_pos, :] = k
|
339 |
+
past_key_value.past_window_v[self.layer_idx][:, :, window_pos : new_window_pos, :] = v
|
340 |
+
s_k = past_key_value.past_window_k[self.layer_idx][:, :, : new_window_pos, :]
|
341 |
+
s_v = past_key_value.past_window_v[self.layer_idx][:, :, : new_window_pos, :]
|
342 |
+
|
343 |
+
rfa_k, rfa_v = past_key_value.get_chunk_rfas(self.layer_idx)
|
344 |
+
|
345 |
+
############################################
|
346 |
+
# compute the full attention output
|
347 |
+
############################################
|
348 |
+
# 2. in decoding, the input shape is
|
349 |
+
# q: [b, h, 1, d] or [b, h, z, d] (for multi-byte prediction)
|
350 |
+
# k/v: [b, h, 1 + s, d]
|
351 |
+
# rfa_k/rfa_v: [b, h, n // c, d]
|
352 |
+
if rfa_k is not None and rfa_v is not None:
|
353 |
+
# NOTE the cat order should be taken care of;
|
354 |
+
# should align with the order based on which
|
355 |
+
# the attention mask is constructed
|
356 |
+
# agg_k = torch.cat([s_k, rfa_k], dim=-2)
|
357 |
+
# agg_v = torch.cat([s_v, rfa_v], dim=-2)
|
358 |
+
agg_k = torch.cat([rfa_k, s_k], dim=-2)
|
359 |
+
agg_v = torch.cat([rfa_v, s_v], dim=-2)
|
360 |
+
else:
|
361 |
+
agg_k = s_k
|
362 |
+
agg_v = s_v
|
363 |
+
attn_output = F.scaled_dot_product_attention(
|
364 |
+
q, agg_k, agg_v,
|
365 |
+
attn_mask=attention_mask,
|
366 |
+
is_causal=False,
|
367 |
+
dropout_p=0.0,
|
368 |
+
scale=self.head_dim_scaling
|
369 |
+
)
|
370 |
+
|
371 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
372 |
+
raise ValueError(
|
373 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
374 |
+
f" {attn_output.size()}"
|
375 |
+
)
|
376 |
+
attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size)
|
377 |
+
attn_output = self.o_proj(attn_output)
|
378 |
+
attn_weights = None
|
379 |
+
return attn_output, attn_weights, past_key_value
|
380 |
+
|
381 |
+
def forward(
|
382 |
+
self,
|
383 |
+
hidden_states: torch.Tensor,
|
384 |
+
attention_mask: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None,
|
385 |
+
position_ids: Optional[torch.LongTensor] = None,
|
386 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
387 |
+
output_attentions: bool = False,
|
388 |
+
use_cache: bool = False,
|
389 |
+
cos: Optional[torch.Tensor] = None,
|
390 |
+
sin: Optional[torch.Tensor] = None,
|
391 |
+
multibyte_decoding: Optional[bool] = False,
|
392 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
393 |
+
assert not output_attentions
|
394 |
+
if use_cache and past_key_value is None:
|
395 |
+
raise ValueError
|
396 |
+
|
397 |
+
assert USE_TRITON_IMPL
|
398 |
+
if use_cache and multibyte_decoding:
|
399 |
+
return self._multibyte_decoding_forward(
|
400 |
+
hidden_states,
|
401 |
+
attention_mask=attention_mask,
|
402 |
+
position_ids=position_ids,
|
403 |
+
past_key_value=past_key_value,
|
404 |
+
output_attentions=output_attentions,
|
405 |
+
use_cache=use_cache,
|
406 |
+
cos=cos,
|
407 |
+
sin=sin,
|
408 |
+
)
|
409 |
+
else:
|
410 |
+
return self._triton_forward(
|
411 |
+
hidden_states,
|
412 |
+
attention_mask=attention_mask,
|
413 |
+
position_ids=position_ids,
|
414 |
+
past_key_value=past_key_value,
|
415 |
+
output_attentions=output_attentions,
|
416 |
+
use_cache=use_cache,
|
417 |
+
cos=cos,
|
418 |
+
sin=sin,
|
419 |
+
)
|
eva_agg_kernel.py
ADDED
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import triton
|
5 |
+
import triton.language as tl
|
6 |
+
|
7 |
+
# Disabling autotune for now, set num_warps=4 if headdim=64 and num_warps=8 if headdim=128
|
8 |
+
# @triton.autotune(
|
9 |
+
# configs=[
|
10 |
+
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 128}, num_warps=4, num_stages=1),
|
11 |
+
# # This config has a race condition when EVEN_M == False, disabling it for now.
|
12 |
+
# # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1),
|
13 |
+
# ],
|
14 |
+
# key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM']
|
15 |
+
# )
|
16 |
+
@triton.heuristics(
|
17 |
+
{
|
18 |
+
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
19 |
+
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
|
20 |
+
"EVEN_C": lambda args: args["nchunks"] % args["BLOCK_N"] == 0,
|
21 |
+
"EVEN_W": lambda args: args["WINDOW_SIZE"] % args["BLOCK_N"] == 0,
|
22 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
23 |
+
}
|
24 |
+
)
|
25 |
+
@triton.jit
|
26 |
+
def _fwd_eva_agg_kernel(
|
27 |
+
Q,
|
28 |
+
K,
|
29 |
+
V,
|
30 |
+
RFA_K,
|
31 |
+
RFA_V,
|
32 |
+
WindowMask,
|
33 |
+
Out,
|
34 |
+
softmax_scale,
|
35 |
+
stride_qb, stride_qh, stride_qm,
|
36 |
+
stride_kb, stride_kh, stride_kn,
|
37 |
+
stride_vb, stride_vh, stride_vn,
|
38 |
+
stride_rfa_kb, stride_rfa_kh, stride_rfa_kc,
|
39 |
+
stride_rfa_vb, stride_rfa_vh, stride_rfa_vc,
|
40 |
+
stride_mb, stride_mm,
|
41 |
+
stride_ob, stride_oh, stride_om,
|
42 |
+
nheads,
|
43 |
+
seqlen_q,
|
44 |
+
seqlen_k,
|
45 |
+
nchunks,
|
46 |
+
headdim,
|
47 |
+
CACHE_KEY_SEQLEN_Q, # TODO: why keeping this
|
48 |
+
CACHE_KEY_SEQLEN_K, # TODO: why keeping this
|
49 |
+
CACHE_KEY_NCHUNKS, # TODO: why keeping this
|
50 |
+
CHUNKS_PER_WINDOW: tl.constexpr,
|
51 |
+
WINDOW_SIZE: tl.constexpr,
|
52 |
+
MASK_TYPE: tl.constexpr,
|
53 |
+
EMPTY_RFA_KV: tl.constexpr,
|
54 |
+
BLOCK_HEADDIM: tl.constexpr,
|
55 |
+
EVEN_M: tl.constexpr,
|
56 |
+
EVEN_N: tl.constexpr,
|
57 |
+
EVEN_W: tl.constexpr,
|
58 |
+
EVEN_C: tl.constexpr,
|
59 |
+
EVEN_HEADDIM: tl.constexpr,
|
60 |
+
BLOCK_M: tl.constexpr,
|
61 |
+
BLOCK_N: tl.constexpr,
|
62 |
+
):
|
63 |
+
start_m = tl.program_id(0)
|
64 |
+
off_bh = tl.program_id(1)
|
65 |
+
off_h = off_bh % nheads
|
66 |
+
off_b = off_bh // nheads
|
67 |
+
# initialize offsets
|
68 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
69 |
+
offs_w = (start_m * BLOCK_M) // WINDOW_SIZE
|
70 |
+
offs_n = tl.arange(0, BLOCK_N)
|
71 |
+
offs_c = tl.arange(0, BLOCK_N)
|
72 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
73 |
+
# TODO: add paratheses or not
|
74 |
+
q_ptrs = (
|
75 |
+
Q +
|
76 |
+
off_b * stride_qb +
|
77 |
+
off_h * stride_qh +
|
78 |
+
(offs_m[:, None] * stride_qm + offs_d[None, :])
|
79 |
+
)
|
80 |
+
k_ptrs = (
|
81 |
+
K +
|
82 |
+
off_b * stride_kb +
|
83 |
+
off_h * stride_kh +
|
84 |
+
(offs_n[:, None] * stride_kn + offs_d[None, :])
|
85 |
+
)
|
86 |
+
v_ptrs = (
|
87 |
+
V +
|
88 |
+
off_b * stride_vb +
|
89 |
+
off_h * stride_vh +
|
90 |
+
(offs_n[:, None] * stride_vn + offs_d[None, :])
|
91 |
+
)
|
92 |
+
if EMPTY_RFA_KV == 0:
|
93 |
+
rfa_k_ptrs = (
|
94 |
+
RFA_K +
|
95 |
+
off_b * stride_rfa_kb +
|
96 |
+
off_h * stride_rfa_kh +
|
97 |
+
(offs_c[:, None] * stride_rfa_kc + offs_d[None, :])
|
98 |
+
)
|
99 |
+
rfa_v_ptrs = (
|
100 |
+
RFA_V +
|
101 |
+
off_b * stride_rfa_vb +
|
102 |
+
off_h * stride_rfa_vh +
|
103 |
+
(offs_c[:, None] * stride_rfa_vc + offs_d[None, :])
|
104 |
+
)
|
105 |
+
|
106 |
+
qk_scale = softmax_scale
|
107 |
+
qk_scale *= 1.4426950408889634 # log2(e)
|
108 |
+
if MASK_TYPE == 1:
|
109 |
+
m_ptrs = (
|
110 |
+
WindowMask +
|
111 |
+
off_b * stride_mb +
|
112 |
+
(offs_m[:, None] * stride_mm + offs_n[None, :])
|
113 |
+
)
|
114 |
+
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
115 |
+
d_i = tl.zeros([BLOCK_M], dtype=tl.float32)
|
116 |
+
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
117 |
+
# load q: it will stay in SRAM throughout
|
118 |
+
# [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call
|
119 |
+
# tl.load(q_ptrs), we get the wrong output!
|
120 |
+
if EVEN_M & EVEN_N:
|
121 |
+
if EVEN_HEADDIM:
|
122 |
+
q = tl.load(
|
123 |
+
q_ptrs
|
124 |
+
)
|
125 |
+
else:
|
126 |
+
q = tl.load(
|
127 |
+
q_ptrs,
|
128 |
+
mask=offs_d[None, :] < headdim,
|
129 |
+
other=0.0
|
130 |
+
)
|
131 |
+
else:
|
132 |
+
if EVEN_HEADDIM:
|
133 |
+
q = tl.load(
|
134 |
+
q_ptrs,
|
135 |
+
mask=offs_m[:, None] < seqlen_q,
|
136 |
+
other=0.0
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
q = tl.load(
|
140 |
+
q_ptrs,
|
141 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
142 |
+
other=0.0
|
143 |
+
)
|
144 |
+
# loop over k, v and update accumulator
|
145 |
+
# Iterate over local singletons;
|
146 |
+
# so we only iterate over blocks within the current window
|
147 |
+
start_idx_n = offs_w * WINDOW_SIZE
|
148 |
+
end_idx_n = tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
|
149 |
+
for start_n in range(start_idx_n, end_idx_n, BLOCK_N):
|
150 |
+
start_n = tl.multiple_of(start_n, BLOCK_N)
|
151 |
+
# -- compute qk ----
|
152 |
+
if EVEN_N & EVEN_M:
|
153 |
+
if EVEN_HEADDIM:
|
154 |
+
k = tl.load(
|
155 |
+
k_ptrs + start_n * stride_kn
|
156 |
+
)
|
157 |
+
else:
|
158 |
+
k = tl.load(
|
159 |
+
k_ptrs + start_n * stride_kn,
|
160 |
+
mask=offs_d[None, :] < headdim,
|
161 |
+
other=0.0
|
162 |
+
)
|
163 |
+
else:
|
164 |
+
if EVEN_HEADDIM:
|
165 |
+
k = tl.load(
|
166 |
+
k_ptrs + start_n * stride_kn,
|
167 |
+
mask=(start_n + offs_n)[:, None] < seqlen_k,
|
168 |
+
other=0.0,
|
169 |
+
)
|
170 |
+
else:
|
171 |
+
k = tl.load(
|
172 |
+
k_ptrs + start_n * stride_kn,
|
173 |
+
mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
174 |
+
other=0.0,
|
175 |
+
)
|
176 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
177 |
+
qk += tl.dot(q, tl.trans(k))
|
178 |
+
# Trying to combine the two masks seem to make the result wrong
|
179 |
+
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
180 |
+
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf"))
|
181 |
+
|
182 |
+
if MASK_TYPE == 1:
|
183 |
+
if EVEN_M & EVEN_W:
|
184 |
+
mask = tl.load(
|
185 |
+
m_ptrs + start_n - start_idx_n
|
186 |
+
).to(tl.float32)
|
187 |
+
else:
|
188 |
+
mask = tl.load(
|
189 |
+
m_ptrs + start_n - start_idx_n,
|
190 |
+
mask=(offs_m[:, None] < seqlen_q)
|
191 |
+
& ((start_n - start_idx_n + offs_n)[None, :] < WINDOW_SIZE),
|
192 |
+
other=0.0,
|
193 |
+
).to(tl.float32)
|
194 |
+
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
195 |
+
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
196 |
+
# to multiply with softmax_scale here.
|
197 |
+
# we assume mask already implies the causal masking
|
198 |
+
qk = qk * qk_scale + mask
|
199 |
+
m_ij = tl.maximum(tl.max(qk, 1), m_i)
|
200 |
+
p = tl.exp2(qk - m_ij[:, None])
|
201 |
+
else:
|
202 |
+
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
|
203 |
+
m_ij = tl.maximum(tl.max(qk, 1) * qk_scale, m_i)
|
204 |
+
p = tl.exp2(qk * qk_scale - m_ij[:, None])
|
205 |
+
|
206 |
+
d_ij = tl.sum(p, 1)
|
207 |
+
|
208 |
+
# scale acc_o
|
209 |
+
prev_scale = tl.exp2(m_i - m_ij)
|
210 |
+
# # -- update output accumulator --
|
211 |
+
acc_o = acc_o * prev_scale[:, None]
|
212 |
+
# update acc_o
|
213 |
+
if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition
|
214 |
+
if EVEN_HEADDIM:
|
215 |
+
v = tl.load(
|
216 |
+
v_ptrs + start_n * stride_vn
|
217 |
+
)
|
218 |
+
else:
|
219 |
+
v = tl.load(
|
220 |
+
v_ptrs + start_n * stride_vn,
|
221 |
+
mask=offs_d[None, :] < headdim,
|
222 |
+
other=0.0
|
223 |
+
)
|
224 |
+
else:
|
225 |
+
if EVEN_HEADDIM:
|
226 |
+
v = tl.load(
|
227 |
+
v_ptrs + start_n * stride_vn,
|
228 |
+
mask=(start_n + offs_n)[:, None] < seqlen_k,
|
229 |
+
other=0.0,
|
230 |
+
)
|
231 |
+
else:
|
232 |
+
v = tl.load(
|
233 |
+
v_ptrs + start_n * stride_vn,
|
234 |
+
mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
235 |
+
other=0.0,
|
236 |
+
)
|
237 |
+
p = p.to(v.dtype)
|
238 |
+
acc_o = tl.dot(p, v, acc_o)
|
239 |
+
|
240 |
+
# -- update statistics
|
241 |
+
d_i = d_i * prev_scale + d_ij
|
242 |
+
m_i = m_ij
|
243 |
+
|
244 |
+
if EMPTY_RFA_KV == 0:
|
245 |
+
# Iterate over RFA chunks
|
246 |
+
# we only iterate over chunks before the current local singleton window
|
247 |
+
end_idx_c = tl.minimum(offs_w * CHUNKS_PER_WINDOW, nchunks)
|
248 |
+
for start_c in range(0, end_idx_c, BLOCK_N):
|
249 |
+
start_c = tl.multiple_of(start_c, BLOCK_N)
|
250 |
+
# -- compute qk ----
|
251 |
+
if EVEN_C & EVEN_M:
|
252 |
+
if EVEN_HEADDIM:
|
253 |
+
rfa_k = tl.load(
|
254 |
+
rfa_k_ptrs + start_c * stride_rfa_kc
|
255 |
+
)
|
256 |
+
else:
|
257 |
+
rfa_k = tl.load(
|
258 |
+
rfa_k_ptrs + start_c * stride_rfa_kc,
|
259 |
+
mask=offs_d[None, :] < headdim,
|
260 |
+
other=0.0
|
261 |
+
)
|
262 |
+
else:
|
263 |
+
if EVEN_HEADDIM:
|
264 |
+
rfa_k = tl.load(
|
265 |
+
rfa_k_ptrs + start_c * stride_rfa_kc,
|
266 |
+
mask=(start_c + offs_c)[:, None] < nchunks,
|
267 |
+
other=0.0,
|
268 |
+
)
|
269 |
+
else:
|
270 |
+
rfa_k = tl.load(
|
271 |
+
rfa_k_ptrs + start_c * stride_rfa_kc,
|
272 |
+
mask=((start_c + offs_c)[:, None] < nchunks) & (offs_d[None, :] < headdim),
|
273 |
+
other=0.0,
|
274 |
+
)
|
275 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
276 |
+
qk += tl.dot(q, tl.trans(rfa_k))
|
277 |
+
# Trying to combine the two masks seem to make the result wrong
|
278 |
+
if not EVEN_C: # Need to mask out otherwise the softmax is wrong
|
279 |
+
qk += tl.where((start_c + offs_c)[None, :] < nchunks, 0, float("-inf"))
|
280 |
+
|
281 |
+
m_ij = tl.maximum(tl.max(qk, 1) * qk_scale, m_i)
|
282 |
+
p = tl.exp2(qk * qk_scale - m_ij[:, None])
|
283 |
+
|
284 |
+
d_ij = tl.sum(p, 1)
|
285 |
+
|
286 |
+
# scale acc_o
|
287 |
+
prev_scale = tl.exp2(m_i - m_ij)
|
288 |
+
# # -- update output accumulator --
|
289 |
+
acc_o = acc_o * prev_scale[:, None]
|
290 |
+
# update acc_o
|
291 |
+
# TODO: If we just do "if EVEN_N", there seems to be some race condition ?
|
292 |
+
if EVEN_C & EVEN_M:
|
293 |
+
if EVEN_HEADDIM:
|
294 |
+
rfa_v = tl.load(
|
295 |
+
rfa_v_ptrs + start_c * stride_rfa_vc
|
296 |
+
)
|
297 |
+
else:
|
298 |
+
rfa_v = tl.load(
|
299 |
+
rfa_v_ptrs + start_c * stride_rfa_vc,
|
300 |
+
mask=offs_d[None, :] < headdim,
|
301 |
+
other=0.0
|
302 |
+
)
|
303 |
+
else:
|
304 |
+
if EVEN_HEADDIM:
|
305 |
+
rfa_v = tl.load(
|
306 |
+
rfa_v_ptrs + start_c * stride_rfa_vc,
|
307 |
+
mask=(start_c + offs_n)[:, None] < nchunks,
|
308 |
+
other=0.0,
|
309 |
+
)
|
310 |
+
else:
|
311 |
+
rfa_v = tl.load(
|
312 |
+
rfa_v_ptrs + start_c * stride_rfa_vc,
|
313 |
+
mask=((start_c + offs_n)[:, None] < nchunks) & (offs_d[None, :] < headdim),
|
314 |
+
other=0.0,
|
315 |
+
)
|
316 |
+
p = p.to(rfa_v.dtype)
|
317 |
+
acc_o = tl.dot(p, rfa_v, acc_o)
|
318 |
+
|
319 |
+
# -- update statistics
|
320 |
+
d_i = d_i * prev_scale + d_ij
|
321 |
+
m_i = m_ij
|
322 |
+
|
323 |
+
# BUG: have to store and immediately load
|
324 |
+
acc_o = acc_o / d_i[:, None]
|
325 |
+
# TODO: understand why rematerialize offsets to save registers?
|
326 |
+
start_m = tl.program_id(0)
|
327 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
328 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
329 |
+
out_ptrs = (
|
330 |
+
Out +
|
331 |
+
off_b * stride_ob +
|
332 |
+
off_h * stride_oh +
|
333 |
+
(offs_m[:, None] * stride_om + offs_d[None, :])
|
334 |
+
)
|
335 |
+
if EVEN_M:
|
336 |
+
if EVEN_HEADDIM:
|
337 |
+
tl.store(
|
338 |
+
out_ptrs, acc_o
|
339 |
+
)
|
340 |
+
else:
|
341 |
+
tl.store(
|
342 |
+
out_ptrs, acc_o,
|
343 |
+
mask=offs_d[None, :] < headdim
|
344 |
+
)
|
345 |
+
else:
|
346 |
+
if EVEN_HEADDIM:
|
347 |
+
tl.store(
|
348 |
+
out_ptrs, acc_o,
|
349 |
+
mask=offs_m[:, None] < seqlen_q
|
350 |
+
)
|
351 |
+
else:
|
352 |
+
tl.store(
|
353 |
+
out_ptrs, acc_o,
|
354 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)
|
355 |
+
)
|
356 |
+
|
357 |
+
def triton_eva_agg_fwd(q, k, v, rfa_k, rfa_v, window_mask, softmax_scale, window_size, chunks_per_window):
|
358 |
+
if rfa_k is None and rfa_v is None:
|
359 |
+
empty_rfa_kv = 1
|
360 |
+
|
361 |
+
q, k, v = [
|
362 |
+
x if x.stride(-1) == 1 else x.contiguous()
|
363 |
+
for x in [q, k, v]
|
364 |
+
]
|
365 |
+
else:
|
366 |
+
assert rfa_k is not None and rfa_v is not None, "Both rfa_k and rfa_v must either be None or have values at the same time."
|
367 |
+
empty_rfa_kv = 0
|
368 |
+
|
369 |
+
q, k, v, rfa_k, rfa_v = [
|
370 |
+
x if x.stride(-1) == 1 else x.contiguous()
|
371 |
+
for x in [q, k, v, rfa_k, rfa_v]
|
372 |
+
]
|
373 |
+
|
374 |
+
# shape constraints
|
375 |
+
batch, nheads, seqlen_q, head_dim = q.shape
|
376 |
+
_, _, seqlen_k, _ = k.shape
|
377 |
+
if empty_rfa_kv == 0:
|
378 |
+
nchunks = rfa_k.shape[-2]
|
379 |
+
assert rfa_k.shape == (batch, nheads, nchunks, head_dim)
|
380 |
+
assert rfa_v.shape == (batch, nheads, nchunks, head_dim)
|
381 |
+
assert q.dtype == k.dtype == v.dtype == rfa_k.dtype == rfa_v.dtype
|
382 |
+
else:
|
383 |
+
nchunks = 0
|
384 |
+
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same type"
|
385 |
+
assert k.shape == (batch, nheads, seqlen_k, head_dim)
|
386 |
+
assert v.shape == (batch, nheads, seqlen_k, head_dim)
|
387 |
+
|
388 |
+
assert head_dim <= 128, "We only test head dimensions up to 128"
|
389 |
+
# assert q.dtype in [torch.float16, torch.bfloat16], "Only support fp16 and bf16"
|
390 |
+
assert q.dtype in [torch.bfloat16, torch.float], "Only support bf16 and fp32 for now"
|
391 |
+
assert q.is_cuda and k.is_cuda and v.is_cuda
|
392 |
+
softmax_scale = softmax_scale or 1.0 / math.sqrt(head_dim)
|
393 |
+
|
394 |
+
mask_type = 0
|
395 |
+
if window_mask is not None:
|
396 |
+
mask_type = 1
|
397 |
+
assert window_mask.dtype == q.dtype, torch.float
|
398 |
+
assert window_mask.is_cuda
|
399 |
+
assert window_mask.dim() == 4
|
400 |
+
assert window_mask.shape == (batch, 1, seqlen_q, window_size)
|
401 |
+
if window_mask.stride(-1) != 1:
|
402 |
+
window_mask = window_mask.contiguous()
|
403 |
+
mask_strides = (
|
404 |
+
(window_mask.stride(0), window_mask.stride(2))
|
405 |
+
if mask_type == 1 else
|
406 |
+
(0, 0)
|
407 |
+
)
|
408 |
+
|
409 |
+
rfa_k_strides = (
|
410 |
+
(rfa_k.stride(0), rfa_k.stride(1), rfa_k.stride(2))
|
411 |
+
if empty_rfa_kv == 0 else
|
412 |
+
(0, 0, 0)
|
413 |
+
)
|
414 |
+
rfa_v_strides = (
|
415 |
+
(rfa_v.stride(0), rfa_v.stride(1), rfa_v.stride(2))
|
416 |
+
if empty_rfa_kv == 0 else
|
417 |
+
(0, 0, 0)
|
418 |
+
)
|
419 |
+
assert chunks_per_window > 0, "chunks_per_window must be greater than 0"
|
420 |
+
|
421 |
+
o = torch.empty_like(q)
|
422 |
+
|
423 |
+
BLOCK_HEADDIM = max(triton.next_power_of_2(head_dim), 16)
|
424 |
+
if q.dtype == torch.float:
|
425 |
+
BLOCK = 64
|
426 |
+
else:
|
427 |
+
BLOCK = 128
|
428 |
+
num_warps = 4 if head_dim <= 64 else 8
|
429 |
+
assert chunks_per_window >= BLOCK, "chunks_per_window must be greater than BLOCK"
|
430 |
+
# WINDOW_MASK_TYPE:
|
431 |
+
# - 0: regular causal mask, simply None
|
432 |
+
# - 1: the shape must be B, 1, W, I, J
|
433 |
+
|
434 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
|
435 |
+
_fwd_eva_agg_kernel[grid](
|
436 |
+
q,
|
437 |
+
k,
|
438 |
+
v,
|
439 |
+
rfa_k,
|
440 |
+
rfa_v,
|
441 |
+
window_mask,
|
442 |
+
o,
|
443 |
+
softmax_scale,
|
444 |
+
q.stride(0), q.stride(1), q.stride(2),
|
445 |
+
k.stride(0), k.stride(1), k.stride(2),
|
446 |
+
v.stride(0), v.stride(1), v.stride(2),
|
447 |
+
rfa_k_strides[0], rfa_k_strides[1], rfa_k_strides[2],
|
448 |
+
rfa_v_strides[0], rfa_v_strides[1], rfa_v_strides[2],
|
449 |
+
mask_strides[0], mask_strides[1],
|
450 |
+
o.stride(0), o.stride(1), o.stride(2),
|
451 |
+
nheads,
|
452 |
+
seqlen_q,
|
453 |
+
seqlen_k,
|
454 |
+
nchunks,
|
455 |
+
head_dim,
|
456 |
+
seqlen_q // 32,
|
457 |
+
seqlen_k // 32,
|
458 |
+
nchunks // 32,
|
459 |
+
chunks_per_window,
|
460 |
+
window_size,
|
461 |
+
mask_type,
|
462 |
+
empty_rfa_kv,
|
463 |
+
BLOCK_HEADDIM,
|
464 |
+
BLOCK_M=BLOCK,
|
465 |
+
BLOCK_N=BLOCK,
|
466 |
+
num_warps=num_warps,
|
467 |
+
num_stages=1,
|
468 |
+
)
|
469 |
+
return o
|
eva_cache.py
ADDED
@@ -0,0 +1,761 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Optional, Tuple, List, Any, Union
|
2 |
+
import torch
|
3 |
+
from transformers.cache_utils import Cache
|
4 |
+
|
5 |
+
class EvaCache(Cache):
|
6 |
+
"""
|
7 |
+
A cache that grows dynamically as more tokens are generated. This is the default for generative models.
|
8 |
+
|
9 |
+
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
|
10 |
+
`[batch_size, num_heads, seq_len, head_dim]`.
|
11 |
+
"""
|
12 |
+
|
13 |
+
def __init__(self) -> None:
|
14 |
+
self.w_k: List[torch.Tensor] = []
|
15 |
+
self.w_v: List[torch.Tensor] = []
|
16 |
+
|
17 |
+
self.rf_q: List[torch.Tensor] = []
|
18 |
+
self.rf_k: List[torch.Tensor] = []
|
19 |
+
self.rf_v: List[torch.Tensor] = []
|
20 |
+
|
21 |
+
self.softmax_phi_k_v: List[torch.Tensor] = []
|
22 |
+
self.log_sum_phi_k: List[torch.Tensor] = []
|
23 |
+
self.rf_k_bar: List[torch.Tensor] = []
|
24 |
+
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
25 |
+
|
26 |
+
# attention masks temporary buffer
|
27 |
+
self.rf_mask: List[Optional[torch.Tensor]] = []
|
28 |
+
self.s_mask: List[torch.Tensor] = []
|
29 |
+
self.chunk_mask: List[torch.Tensor] = []
|
30 |
+
|
31 |
+
def __len__(self):
|
32 |
+
"""
|
33 |
+
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
|
34 |
+
to the number of layers in the model.
|
35 |
+
"""
|
36 |
+
return len(self.w_k)
|
37 |
+
|
38 |
+
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
|
39 |
+
"""Given the sequence length of the new inputs, returns the usable length of the cache."""
|
40 |
+
# Cache without size limit -> all cache is usable
|
41 |
+
# Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
|
42 |
+
# length, we will need to evict part of the cache (and thus not all cache is usable)
|
43 |
+
max_length = self.get_max_length()
|
44 |
+
previous_seq_length = self.get_seq_length(layer_idx)
|
45 |
+
if max_length is not None and previous_seq_length + new_seq_length > max_length:
|
46 |
+
return max_length - new_seq_length
|
47 |
+
return previous_seq_length
|
48 |
+
|
49 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
50 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
51 |
+
for layer_idx in range(len(self.w_k)):
|
52 |
+
device = self.w_k[layer_idx].device
|
53 |
+
self.w_k[layer_idx] = self.w_k[layer_idx].index_select(0, beam_idx.to(device))
|
54 |
+
|
55 |
+
device = self.w_v[layer_idx].device
|
56 |
+
self.w_v[layer_idx] = self.w_v[layer_idx].index_select(0, beam_idx.to(device))
|
57 |
+
|
58 |
+
device = self.rf_q[layer_idx].device
|
59 |
+
self.rf_q[layer_idx] = self.rf_q[layer_idx].index_select(0, beam_idx.to(device))
|
60 |
+
|
61 |
+
device = self.rf_k[layer_idx].device
|
62 |
+
self.rf_k[layer_idx] = self.rf_k[layer_idx].index_select(0, beam_idx.to(device))
|
63 |
+
|
64 |
+
device = self.rf_v[layer_idx].device
|
65 |
+
self.rf_v[layer_idx] = self.rf_v[layer_idx].index_select(0, beam_idx.to(device))
|
66 |
+
|
67 |
+
device = self.softmax_phi_k_v[layer_idx].device
|
68 |
+
self.softmax_phi_k_v[layer_idx] = self.softmax_phi_k_v[layer_idx].index_select(0, beam_idx.to(device))
|
69 |
+
|
70 |
+
device = self.log_sum_phi_k[layer_idx].device
|
71 |
+
self.log_sum_phi_k[layer_idx] = self.log_sum_phi_k[layer_idx].index_select(0, beam_idx.to(device))
|
72 |
+
|
73 |
+
device = self.rf_k_bar[layer_idx].device
|
74 |
+
self.rf_k_bar[layer_idx] = self.rf_k_bar[layer_idx].index_select(0, beam_idx.to(device))
|
75 |
+
|
76 |
+
device = self.rf_mask[layer_idx].device
|
77 |
+
self.rf_mask[layer_idx] = self.rf_mask[layer_idx].index_select(0, beam_idx.to(device))
|
78 |
+
|
79 |
+
device = self.s_mask[layer_idx].device
|
80 |
+
self.s_mask[layer_idx] = self.s_mask[layer_idx].index_select(0, beam_idx.to(device))
|
81 |
+
|
82 |
+
device = self.chunk_mask[layer_idx].device
|
83 |
+
self.chunk_mask[layer_idx] = self.chunk_mask[layer_idx].index_select(0, beam_idx.to(device))
|
84 |
+
@property
|
85 |
+
def seen_tokens(self):
|
86 |
+
if hasattr(self, "_seen_tokens"):
|
87 |
+
return self._seen_tokens
|
88 |
+
else:
|
89 |
+
return None
|
90 |
+
|
91 |
+
def update_past_len(
|
92 |
+
self,
|
93 |
+
cur_q_len: int,
|
94 |
+
layer_idx: int
|
95 |
+
):
|
96 |
+
# Update the number of seen tokens
|
97 |
+
if layer_idx == 0:
|
98 |
+
self._seen_tokens += cur_q_len
|
99 |
+
return self._seen_tokens
|
100 |
+
|
101 |
+
def update_mask(
|
102 |
+
self,
|
103 |
+
prev_s_mask,
|
104 |
+
cur_s_mask,
|
105 |
+
chunk_mask,
|
106 |
+
rf_mask,
|
107 |
+
layer_idx,
|
108 |
+
window_size,
|
109 |
+
chunk_size,
|
110 |
+
):
|
111 |
+
############################################
|
112 |
+
# compute masks for singletons
|
113 |
+
############################################
|
114 |
+
q_len = None
|
115 |
+
if len(self.s_mask) <= layer_idx:
|
116 |
+
q_len = chunk_mask.shape[-2]
|
117 |
+
# prefill stage
|
118 |
+
# q is of shape [b, h, n, d]
|
119 |
+
if q_len < window_size:
|
120 |
+
assert prev_s_mask is None
|
121 |
+
|
122 |
+
# w_v = # [b, h, 1, j, d]
|
123 |
+
# store the past window-wise key-value pairs
|
124 |
+
self.s_mask.append(cur_s_mask[..., -1:, :] if cur_s_mask is not None else prev_s_mask[..., -1, -1:, :])
|
125 |
+
else:
|
126 |
+
# decoding stage
|
127 |
+
prev_s_mask = None
|
128 |
+
|
129 |
+
cached_s_mask = self.s_mask[layer_idx]
|
130 |
+
assert cached_s_mask is not None
|
131 |
+
if cached_s_mask.shape[-1] == window_size:
|
132 |
+
cur_s_mask = cur_s_mask
|
133 |
+
else:
|
134 |
+
cur_s_mask = torch.cat([cached_s_mask, cur_s_mask], dim=-1)
|
135 |
+
|
136 |
+
# store the past window-wise key-value pairs
|
137 |
+
self.s_mask[layer_idx] = cur_s_mask
|
138 |
+
|
139 |
+
############################################
|
140 |
+
# compute masks for intra-chunks
|
141 |
+
############################################
|
142 |
+
dump_rf_mask = None
|
143 |
+
if len(self.rf_mask) <= layer_idx:
|
144 |
+
# initialize chunk stats
|
145 |
+
# prefill stage
|
146 |
+
if q_len < chunk_size:
|
147 |
+
cur_rf_mask = rf_mask
|
148 |
+
else:
|
149 |
+
if q_len % chunk_size == 0:
|
150 |
+
dump_rf_mask = rf_mask
|
151 |
+
cur_rf_mask = None
|
152 |
+
else:
|
153 |
+
remainder_tokens = q_len % chunk_size
|
154 |
+
if rf_mask is not None:
|
155 |
+
dump_rf_mask, cur_rf_mask = torch.split(rf_mask, [q_len - remainder_tokens, remainder_tokens], dim=-2)
|
156 |
+
else:
|
157 |
+
dump_rf_mask = None
|
158 |
+
cur_rf_mask = None
|
159 |
+
self.rf_mask.append(cur_rf_mask)
|
160 |
+
else:
|
161 |
+
past_rf_mask = self.rf_mask[layer_idx]
|
162 |
+
if past_rf_mask is not None:
|
163 |
+
# when decoding tokens, we always assume the
|
164 |
+
# incoming token mask is 0 (not masked)
|
165 |
+
cur_rf_mask = torch.cat([past_rf_mask, rf_mask], dim=-2)
|
166 |
+
else:
|
167 |
+
# we do not need to use rf_mask anymore after we receive generated tokens
|
168 |
+
cur_rf_mask = None
|
169 |
+
# We need to store rf_k_bar and RFA-results that
|
170 |
+
# compute the per-chunk RFA.
|
171 |
+
|
172 |
+
# Dump the chunk if the len of current chunk reaches <chunk_size>.
|
173 |
+
if cur_rf_mask is not None and cur_rf_mask.shape[-2] == chunk_size:
|
174 |
+
dump_rf_mask = cur_rf_mask
|
175 |
+
cur_rf_mask = None
|
176 |
+
|
177 |
+
self.rf_mask[layer_idx] = cur_rf_mask
|
178 |
+
|
179 |
+
############################################
|
180 |
+
# compute masks for inter chunks
|
181 |
+
############################################
|
182 |
+
if len(self.chunk_mask) <= layer_idx:
|
183 |
+
# prefill stage
|
184 |
+
# q is of shape [b, h, n, d]
|
185 |
+
if q_len < window_size:
|
186 |
+
cur_chunk_mask = chunk_mask
|
187 |
+
prev_chunk_mask = None
|
188 |
+
else:
|
189 |
+
if q_len % window_size == 0:
|
190 |
+
cur_chunk_mask = None
|
191 |
+
prev_chunk_mask = chunk_mask
|
192 |
+
else:
|
193 |
+
remainder_tokens = q_len % window_size
|
194 |
+
# [b, h, n-r, d] [b, h, r, d]
|
195 |
+
prev_chunk_mask, cur_chunk_mask = torch.split(chunk_mask, [q_len - remainder_tokens, remainder_tokens], dim=-2)
|
196 |
+
bsz, num_heads, _, head_dim = prev_chunk_mask.shape
|
197 |
+
prev_chunk_mask = prev_chunk_mask.reshape(bsz, num_heads, -1, window_size, head_dim)
|
198 |
+
|
199 |
+
assert prev_s_mask is not None
|
200 |
+
if prev_s_mask.shape[-3] == 1 and prev_chunk_mask.shape[-3] > 1:
|
201 |
+
# need to expand
|
202 |
+
prev_s_mask = prev_s_mask.expand(-1, -1, prev_chunk_mask.shape[-3], -1, -1)
|
203 |
+
# w_v = # [b, h, 1, j, d]
|
204 |
+
# store the past window-wise key-value pairs
|
205 |
+
self.chunk_mask.append(cur_chunk_mask[..., -1:, :] if cur_chunk_mask is not None else prev_chunk_mask[..., -1, -1:, :])
|
206 |
+
else:
|
207 |
+
# decoding stage
|
208 |
+
prev_chunk_mask = None
|
209 |
+
cur_chunk_mask = self.chunk_mask[layer_idx]
|
210 |
+
|
211 |
+
# if the current sequence length reaches <chunk_size>,
|
212 |
+
# we append a new 1 to the end of chunk_mask
|
213 |
+
seen_seq_len = self.get_seq_length(layer_idx)
|
214 |
+
if seen_seq_len > 0 and seen_seq_len % chunk_size == 0:
|
215 |
+
past_chunk_mask = self.chunk_mask[layer_idx]
|
216 |
+
if past_chunk_mask is not None:
|
217 |
+
# when decoding tokens, we always assume the
|
218 |
+
# incoming token mask is 0 (not masked)
|
219 |
+
cur_chunk_mask = torch.cat([past_chunk_mask, chunk_mask], dim=-1)
|
220 |
+
else:
|
221 |
+
cur_chunk_mask = chunk_mask
|
222 |
+
self.chunk_mask[layer_idx] = cur_chunk_mask
|
223 |
+
|
224 |
+
# if the len of current sequence reaches <window_size> + 1,
|
225 |
+
# we turn on the mask for most recent chunks
|
226 |
+
if seen_seq_len > 0 and seen_seq_len % window_size == 1:
|
227 |
+
cur_chunk_mask = self.chunk_mask[layer_idx]
|
228 |
+
# we do not need to use rf_mask anymore after we receive generated tokens
|
229 |
+
num_chunks_per_window = window_size // chunk_size
|
230 |
+
cur_chunk_mask[..., -num_chunks_per_window:] = False
|
231 |
+
self.chunk_mask[layer_idx] = cur_chunk_mask
|
232 |
+
|
233 |
+
return (prev_s_mask, cur_s_mask, prev_chunk_mask, cur_chunk_mask, dump_rf_mask)
|
234 |
+
|
235 |
+
def update_singletons(
|
236 |
+
self,
|
237 |
+
q,
|
238 |
+
k,
|
239 |
+
v,
|
240 |
+
layer_idx,
|
241 |
+
window_size,
|
242 |
+
):
|
243 |
+
if len(self.w_k) <= layer_idx:
|
244 |
+
# prefill stage
|
245 |
+
# q is of shape [b, h, n, d]
|
246 |
+
q_len = q.shape[-2]
|
247 |
+
if q_len < window_size:
|
248 |
+
w_q = q
|
249 |
+
w_k = k
|
250 |
+
w_v = v
|
251 |
+
past_w_q = past_w_k = past_w_v = None
|
252 |
+
else:
|
253 |
+
if q_len % window_size == 0:
|
254 |
+
w_q = None
|
255 |
+
w_k = None
|
256 |
+
w_v = None
|
257 |
+
past_w_q = q
|
258 |
+
past_w_k = k
|
259 |
+
past_w_v = v
|
260 |
+
else:
|
261 |
+
remainder_tokens = q_len % window_size
|
262 |
+
# [b, h, n-r, d] [b, h, r, d]
|
263 |
+
past_w_q, w_q = torch.split(q, [q_len - remainder_tokens, remainder_tokens], dim=-2)
|
264 |
+
past_w_k, w_k = torch.split(k, [q_len - remainder_tokens, remainder_tokens], dim=-2)
|
265 |
+
past_w_v, w_v = torch.split(v, [q_len - remainder_tokens, remainder_tokens], dim=-2)
|
266 |
+
bsz, num_heads, _, head_dim = past_w_q.shape
|
267 |
+
past_w_q = past_w_q.reshape(bsz, num_heads, -1, window_size, head_dim)
|
268 |
+
past_w_k = past_w_k.reshape(bsz, num_heads, -1, window_size, head_dim)
|
269 |
+
past_w_v = past_w_v.reshape(bsz, num_heads, -1, window_size, head_dim)
|
270 |
+
# w_q = q[..., None, -window_size:, :] # [b, h, 1, j, d]
|
271 |
+
# w_k = # [b, h, 1, j, d]
|
272 |
+
# w_v = # [b, h, 1, j, d]
|
273 |
+
# store the past window-wise key-value pairs
|
274 |
+
# if w_k is None, it means we happen to pass in a sqeuence that is divisible by window_size
|
275 |
+
# we leave the cache with window_size-sized kv pairs to be cleared next iteration
|
276 |
+
self.w_k.append(w_k if w_k is not None else past_w_k[..., -1, :, :])
|
277 |
+
self.w_v.append(w_v if w_v is not None else past_w_v[..., -1, :, :])
|
278 |
+
else:
|
279 |
+
# decoding stage
|
280 |
+
past_w_q = past_w_k = past_w_v = None
|
281 |
+
# this is implemented as either a sliding window or fixed window
|
282 |
+
w_q = q # [b, h, 1, d]
|
283 |
+
w_k = k # [b, h, 1, d]
|
284 |
+
w_v = v # [b, h, 1, d]
|
285 |
+
|
286 |
+
cached_w_k = self.w_k[layer_idx]
|
287 |
+
assert cached_w_k is not None # [b, h, j, d]
|
288 |
+
if cached_w_k.shape[-2] == window_size:
|
289 |
+
w_k = w_k
|
290 |
+
else:
|
291 |
+
w_k = torch.cat([cached_w_k, w_k], dim=-2)
|
292 |
+
|
293 |
+
cached_w_v = self.w_v[layer_idx]
|
294 |
+
assert cached_w_v is not None
|
295 |
+
if cached_w_v.shape[-2] == window_size:
|
296 |
+
w_v = w_v
|
297 |
+
else:
|
298 |
+
w_v = torch.cat([cached_w_v, w_v], dim=-2)
|
299 |
+
|
300 |
+
# store the past window-wise key-value pairs
|
301 |
+
self.w_k[layer_idx] = w_k
|
302 |
+
self.w_v[layer_idx] = w_v
|
303 |
+
return (past_w_q, past_w_k, past_w_v), (w_q, w_k, w_v)
|
304 |
+
|
305 |
+
def update_chunks(
|
306 |
+
self,
|
307 |
+
q,
|
308 |
+
k,
|
309 |
+
v,
|
310 |
+
layer_idx,
|
311 |
+
chunk_size
|
312 |
+
):
|
313 |
+
q_len = q.shape[-2]
|
314 |
+
dump_q = None
|
315 |
+
dump_k = None
|
316 |
+
dump_v = None
|
317 |
+
if len(self.rf_q) <= layer_idx:
|
318 |
+
# initialize chunk stats
|
319 |
+
# prefill stage
|
320 |
+
if q_len < chunk_size:
|
321 |
+
rf_q = q
|
322 |
+
rf_k = k
|
323 |
+
rf_v = v
|
324 |
+
else:
|
325 |
+
if q_len % chunk_size == 0:
|
326 |
+
rf_q = None
|
327 |
+
rf_k = None
|
328 |
+
rf_v = None
|
329 |
+
dump_q = q
|
330 |
+
dump_k = k
|
331 |
+
dump_v = v
|
332 |
+
else:
|
333 |
+
remainder_tokens = q_len % chunk_size
|
334 |
+
# [b, h, n-r, d] [b, h, r, d]
|
335 |
+
dump_q, rf_q = torch.split(q, [q_len - remainder_tokens, remainder_tokens], dim=-2)
|
336 |
+
dump_k, rf_k = torch.split(k, [q_len - remainder_tokens, remainder_tokens], dim=-2)
|
337 |
+
dump_v, rf_v = torch.split(v, [q_len - remainder_tokens, remainder_tokens], dim=-2)
|
338 |
+
self.rf_q.append(rf_q)
|
339 |
+
self.rf_k.append(rf_k)
|
340 |
+
self.rf_v.append(rf_v)
|
341 |
+
else:
|
342 |
+
# decode tokens
|
343 |
+
# add query, key & value to the current chunk.
|
344 |
+
past_rf_q = self.rf_q[layer_idx]
|
345 |
+
if past_rf_q is not None:
|
346 |
+
rf_q = torch.cat([past_rf_q, q], dim=-2)
|
347 |
+
else:
|
348 |
+
rf_q = q
|
349 |
+
|
350 |
+
past_rf_k = self.rf_k[layer_idx]
|
351 |
+
if past_rf_k is not None:
|
352 |
+
rf_k = torch.cat([past_rf_k, k], dim=-2)
|
353 |
+
else:
|
354 |
+
rf_k = k
|
355 |
+
|
356 |
+
past_rf_v = self.rf_v[layer_idx]
|
357 |
+
if past_rf_v is not None:
|
358 |
+
rf_v = torch.cat([past_rf_v, v], dim=-2)
|
359 |
+
else:
|
360 |
+
rf_v = v
|
361 |
+
|
362 |
+
# We need to store rf_k_bar and RFA-results that
|
363 |
+
# compute the per-chunk RFA.
|
364 |
+
|
365 |
+
# Dump the chunk if the len of current chunk reaches <chunk_size>.
|
366 |
+
if rf_q.shape[-2] == chunk_size:
|
367 |
+
dump_q = rf_q
|
368 |
+
dump_k = rf_k
|
369 |
+
dump_v = rf_v
|
370 |
+
# clear the chunk
|
371 |
+
rf_q = None
|
372 |
+
rf_k = None
|
373 |
+
rf_v = None
|
374 |
+
|
375 |
+
self.rf_q[layer_idx] = rf_q
|
376 |
+
self.rf_k[layer_idx] = rf_k
|
377 |
+
self.rf_v[layer_idx] = rf_v
|
378 |
+
|
379 |
+
return dump_q, dump_k, dump_v
|
380 |
+
|
381 |
+
def update_chunk_rfas(
|
382 |
+
self,
|
383 |
+
softmax_phi_k_v,
|
384 |
+
log_sum_phi_k,
|
385 |
+
rf_k_bar,
|
386 |
+
layer_idx,
|
387 |
+
random_feature_dim
|
388 |
+
):
|
389 |
+
if len(self.softmax_phi_k_v) <= layer_idx:
|
390 |
+
# prefill stage
|
391 |
+
self.softmax_phi_k_v.append(softmax_phi_k_v)
|
392 |
+
self.log_sum_phi_k.append(log_sum_phi_k)
|
393 |
+
self.rf_k_bar.append(rf_k_bar)
|
394 |
+
else:
|
395 |
+
# token decoding
|
396 |
+
past_softmax_phi_k_v = self.softmax_phi_k_v[layer_idx]
|
397 |
+
past_log_sum_phi_k = self.log_sum_phi_k[layer_idx]
|
398 |
+
past_rf_k_bar = self.rf_k_bar[layer_idx]
|
399 |
+
|
400 |
+
if past_softmax_phi_k_v is not None:
|
401 |
+
if random_feature_dim == 1:
|
402 |
+
dim = -2
|
403 |
+
else:
|
404 |
+
dim = -3
|
405 |
+
softmax_phi_k_v = torch.cat([past_softmax_phi_k_v, softmax_phi_k_v], dim=dim)
|
406 |
+
|
407 |
+
if past_log_sum_phi_k is not None:
|
408 |
+
if random_feature_dim == 1:
|
409 |
+
dim = -2
|
410 |
+
else:
|
411 |
+
dim = -3
|
412 |
+
log_sum_phi_k = torch.cat([past_log_sum_phi_k, log_sum_phi_k], dim=dim)
|
413 |
+
|
414 |
+
if past_rf_k_bar is not None:
|
415 |
+
rf_k_bar = torch.cat([past_rf_k_bar, rf_k_bar], dim=-2)
|
416 |
+
|
417 |
+
self.softmax_phi_k_v[layer_idx] = softmax_phi_k_v
|
418 |
+
self.log_sum_phi_k[layer_idx] = log_sum_phi_k
|
419 |
+
self.rf_k_bar[layer_idx] = rf_k_bar
|
420 |
+
|
421 |
+
return softmax_phi_k_v, log_sum_phi_k, rf_k_bar
|
422 |
+
|
423 |
+
def get_chunk_rfas(self, layer_idx):
|
424 |
+
if len(self.softmax_phi_k_v) <= layer_idx:
|
425 |
+
return (
|
426 |
+
None,
|
427 |
+
None,
|
428 |
+
None
|
429 |
+
)
|
430 |
+
else:
|
431 |
+
return (
|
432 |
+
self.softmax_phi_k_v[layer_idx],
|
433 |
+
self.log_sum_phi_k[layer_idx],
|
434 |
+
self.rf_k_bar[layer_idx]
|
435 |
+
)
|
436 |
+
|
437 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
438 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
439 |
+
if len(self.w_k) <= layer_idx:
|
440 |
+
return 0
|
441 |
+
return self._seen_tokens
|
442 |
+
|
443 |
+
def get_max_length(self) -> Optional[int]:
|
444 |
+
"""Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
|
445 |
+
return None
|
446 |
+
|
447 |
+
def update(
|
448 |
+
self,
|
449 |
+
layer_idx: int,
|
450 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
451 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
452 |
+
raise NotImplementedError("`update` is not used in Eva Cache.")
|
453 |
+
|
454 |
+
class EvaStaticCacheForTriton(Cache):
|
455 |
+
"""
|
456 |
+
A variant of EvaCache for eva's triton kernels
|
457 |
+
"""
|
458 |
+
|
459 |
+
def __init__(
|
460 |
+
self,
|
461 |
+
batch_size,
|
462 |
+
num_key_value_heads,
|
463 |
+
window_size,
|
464 |
+
head_dim,
|
465 |
+
num_layers,
|
466 |
+
dtype,
|
467 |
+
device
|
468 |
+
) -> None:
|
469 |
+
self.past_window_k: List[torch.Tensor] = []
|
470 |
+
self.past_window_v: List[torch.Tensor] = []
|
471 |
+
|
472 |
+
cache_shape = (batch_size, num_key_value_heads, window_size, head_dim)
|
473 |
+
for idx in range(num_layers):
|
474 |
+
new_window_k = torch.zeros(cache_shape, dtype=dtype, device=device)
|
475 |
+
new_window_v = torch.zeros(cache_shape, dtype=dtype, device=device)
|
476 |
+
self.past_window_k.append(new_window_k)
|
477 |
+
self.past_window_v.append(new_window_v)
|
478 |
+
|
479 |
+
self.past_window_pos: List[int] = []
|
480 |
+
|
481 |
+
self.rfa_k: List[torch.Tensor] = []
|
482 |
+
self.rfa_v: List[torch.Tensor] = []
|
483 |
+
# self.rfa_mask: List[torch.Tensor] = []
|
484 |
+
|
485 |
+
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
486 |
+
|
487 |
+
# attention masks temporary buffer
|
488 |
+
self.rf_mask: List[Optional[torch.Tensor]] = []
|
489 |
+
self.s_mask: List[torch.Tensor] = []
|
490 |
+
|
491 |
+
def __len__(self):
|
492 |
+
"""
|
493 |
+
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
|
494 |
+
to the number of layers in the model.
|
495 |
+
"""
|
496 |
+
return len(self.past_window_pos)
|
497 |
+
|
498 |
+
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
|
499 |
+
"""Given the sequence length of the new inputs, returns the usable length of the cache."""
|
500 |
+
# Cache without size limit -> all cache is usable
|
501 |
+
# Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
|
502 |
+
# length, we will need to evict part of the cache (and thus not all cache is usable)
|
503 |
+
max_length = self.get_max_length()
|
504 |
+
previous_seq_length = self.get_seq_length(layer_idx)
|
505 |
+
if max_length is not None and previous_seq_length + new_seq_length > max_length:
|
506 |
+
return max_length - new_seq_length
|
507 |
+
return previous_seq_length
|
508 |
+
|
509 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
510 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
511 |
+
for layer_idx in range(len(self.past_window_k)):
|
512 |
+
device = self.past_window_k[layer_idx].device
|
513 |
+
self.past_window_k[layer_idx] = self.past_window_k[layer_idx].index_select(0, beam_idx.to(device))
|
514 |
+
|
515 |
+
device = self.past_window_v[layer_idx].device
|
516 |
+
self.past_window_v[layer_idx] = self.past_window_v[layer_idx].index_select(0, beam_idx.to(device))
|
517 |
+
|
518 |
+
device = self.rfa_k[layer_idx].device
|
519 |
+
self.rfa_k[layer_idx] = self.rfa_k[layer_idx].index_select(0, beam_idx.to(device))
|
520 |
+
|
521 |
+
device = self.rfa_v[layer_idx].device
|
522 |
+
self.rfa_v[layer_idx] = self.rfa_v[layer_idx].index_select(0, beam_idx.to(device))
|
523 |
+
|
524 |
+
# device = self.rfa_mask[layer_idx].device
|
525 |
+
# self.rfa_mask[layer_idx] = self.rfa_mask[layer_idx].index_select(0, beam_idx.to(device))
|
526 |
+
|
527 |
+
device = self.rf_mask[layer_idx].device
|
528 |
+
self.rf_mask[layer_idx] = self.rf_mask[layer_idx].index_select(0, beam_idx.to(device))
|
529 |
+
|
530 |
+
device = self.s_mask[layer_idx].device
|
531 |
+
self.s_mask[layer_idx] = self.s_mask[layer_idx].index_select(0, beam_idx.to(device))
|
532 |
+
|
533 |
+
@property
|
534 |
+
def seen_tokens(self):
|
535 |
+
if hasattr(self, "_seen_tokens"):
|
536 |
+
return self._seen_tokens
|
537 |
+
else:
|
538 |
+
return None
|
539 |
+
|
540 |
+
def update_past_len(
|
541 |
+
self,
|
542 |
+
cur_q_len: int,
|
543 |
+
layer_idx: int
|
544 |
+
):
|
545 |
+
# Update the number of seen tokens
|
546 |
+
if layer_idx == 0:
|
547 |
+
self._seen_tokens += cur_q_len
|
548 |
+
return self._seen_tokens
|
549 |
+
|
550 |
+
def update_mask(
|
551 |
+
self,
|
552 |
+
s_mask,
|
553 |
+
rf_mask,
|
554 |
+
layer_idx,
|
555 |
+
window_size,
|
556 |
+
):
|
557 |
+
############################################
|
558 |
+
# compute masks for singletons
|
559 |
+
############################################
|
560 |
+
if len(self.s_mask) <= layer_idx:
|
561 |
+
# prefill stage
|
562 |
+
# q is of shape [b, h, n, d]
|
563 |
+
# s_v = # [b, h, 1, j, d]
|
564 |
+
# store the past window-wise key-value pairs
|
565 |
+
if s_mask is None:
|
566 |
+
cur_s_mask = None
|
567 |
+
else:
|
568 |
+
q_len = s_mask.shape[-2]
|
569 |
+
# s_mask is of shape [b, h, n, w]
|
570 |
+
# let r = q_len % window_size
|
571 |
+
# if r == 0, the mask to be appended is of shape [b, h, 1, w]
|
572 |
+
# otherwise, r < w, the mask to be appended is of shape [b, h, 1, r]
|
573 |
+
remainder_tokens = q_len % window_size
|
574 |
+
if remainder_tokens == 0:
|
575 |
+
cur_s_mask = None
|
576 |
+
else:
|
577 |
+
cur_s_mask = s_mask[..., -1:, :remainder_tokens]
|
578 |
+
self.s_mask.append(cur_s_mask)
|
579 |
+
# we use the passed s_mask for subsequent computations
|
580 |
+
dump_s_mask = s_mask
|
581 |
+
else:
|
582 |
+
# decoding stage
|
583 |
+
past_s_mask = self.s_mask[layer_idx]
|
584 |
+
if past_s_mask is None:
|
585 |
+
assert s_mask is None
|
586 |
+
cur_s_mask = None
|
587 |
+
else:
|
588 |
+
assert s_mask is not None
|
589 |
+
cur_s_mask = torch.cat([past_s_mask, s_mask], dim=-1)
|
590 |
+
|
591 |
+
dump_s_mask = cur_s_mask
|
592 |
+
if cur_s_mask is not None and cur_s_mask.shape[-1] == window_size:
|
593 |
+
cur_s_mask = None
|
594 |
+
# store the past window-wise key-value pairs
|
595 |
+
self.s_mask[layer_idx] = cur_s_mask
|
596 |
+
|
597 |
+
############################################
|
598 |
+
# compute masks for intra-chunks
|
599 |
+
############################################
|
600 |
+
dump_rf_mask = None
|
601 |
+
if len(self.rf_mask) <= layer_idx:
|
602 |
+
# initialize chunk stats
|
603 |
+
# prefill stage
|
604 |
+
if rf_mask is None:
|
605 |
+
cur_rf_mask = None
|
606 |
+
else:
|
607 |
+
q_len = rf_mask.shape[-2]
|
608 |
+
if q_len < window_size:
|
609 |
+
dump_rf_mask = None
|
610 |
+
cur_rf_mask = rf_mask
|
611 |
+
else:
|
612 |
+
if q_len % window_size == 0:
|
613 |
+
dump_rf_mask = rf_mask
|
614 |
+
cur_rf_mask = None
|
615 |
+
else:
|
616 |
+
remainder_tokens = q_len % window_size
|
617 |
+
dump_rf_mask, cur_rf_mask = torch.split(rf_mask, [q_len - remainder_tokens, remainder_tokens], dim=-2)
|
618 |
+
self.rf_mask.append(cur_rf_mask)
|
619 |
+
else:
|
620 |
+
past_rf_mask = self.rf_mask[layer_idx]
|
621 |
+
if past_rf_mask is not None:
|
622 |
+
# when decoding tokens, we always assume the
|
623 |
+
# incoming token mask is 0 (not masked)
|
624 |
+
cur_rf_mask = torch.cat([past_rf_mask, rf_mask], dim=-2)
|
625 |
+
else:
|
626 |
+
cur_rf_mask = None
|
627 |
+
|
628 |
+
if cur_rf_mask is not None and cur_rf_mask.shape[-2] == window_size:
|
629 |
+
dump_rf_mask = cur_rf_mask
|
630 |
+
cur_rf_mask = None
|
631 |
+
|
632 |
+
self.rf_mask[layer_idx] = cur_rf_mask
|
633 |
+
|
634 |
+
return dump_s_mask, dump_rf_mask
|
635 |
+
|
636 |
+
def update_singletons_and_chunks(
|
637 |
+
self,
|
638 |
+
k,
|
639 |
+
v,
|
640 |
+
layer_idx,
|
641 |
+
window_size,
|
642 |
+
):
|
643 |
+
if len(self.past_window_pos) <= layer_idx:
|
644 |
+
# prefill stage
|
645 |
+
s_k = k
|
646 |
+
s_v = v
|
647 |
+
input_len = k.shape[-2]
|
648 |
+
window_pos = 0
|
649 |
+
if input_len <= window_size:
|
650 |
+
new_window_pos = window_pos + input_len
|
651 |
+
|
652 |
+
cached_window_k = k
|
653 |
+
cached_window_v = v
|
654 |
+
dump_k = None
|
655 |
+
dump_v = None
|
656 |
+
else:
|
657 |
+
remainder_tokens = input_len % window_size
|
658 |
+
if remainder_tokens == 0:
|
659 |
+
remainder_tokens = window_size
|
660 |
+
new_window_pos = window_pos + remainder_tokens
|
661 |
+
|
662 |
+
# [b, h, n-r, d] [b, h, r, d]
|
663 |
+
cached_window_k = k[..., -remainder_tokens:, :]
|
664 |
+
cached_window_v = v[..., -remainder_tokens:, :]
|
665 |
+
dump_k = k[..., :-remainder_tokens, :]
|
666 |
+
dump_v = v[..., :-remainder_tokens, :]
|
667 |
+
# store the past window-wise key-value pairs
|
668 |
+
self.past_window_k[layer_idx][:, :, window_pos : new_window_pos, :] = cached_window_k
|
669 |
+
self.past_window_v[layer_idx][:, :, window_pos : new_window_pos, :] = cached_window_v
|
670 |
+
self.past_window_pos.append(new_window_pos)
|
671 |
+
else:
|
672 |
+
# decoding stage
|
673 |
+
# if the previous cache has full tokens,
|
674 |
+
# roll back to the first elements
|
675 |
+
if self.past_window_pos[layer_idx] == window_size:
|
676 |
+
self.past_window_pos[layer_idx] = 0
|
677 |
+
dump_k = self.past_window_k[layer_idx].clone()
|
678 |
+
dump_v = self.past_window_v[layer_idx].clone()
|
679 |
+
else:
|
680 |
+
dump_k = None
|
681 |
+
dump_v = None
|
682 |
+
|
683 |
+
input_len = k.shape[-2]
|
684 |
+
window_pos = self.past_window_pos[layer_idx]
|
685 |
+
new_window_pos = window_pos + input_len
|
686 |
+
|
687 |
+
self.past_window_k[layer_idx][:, :, window_pos : new_window_pos, :] = k
|
688 |
+
self.past_window_v[layer_idx][:, :, window_pos : new_window_pos, :] = v
|
689 |
+
|
690 |
+
s_k = self.past_window_k[layer_idx][:, :, : new_window_pos, :]
|
691 |
+
s_v = self.past_window_v[layer_idx][:, :, : new_window_pos, :]
|
692 |
+
|
693 |
+
self.past_window_pos[layer_idx] = new_window_pos
|
694 |
+
|
695 |
+
return s_k, s_v, dump_k, dump_v
|
696 |
+
|
697 |
+
def update_chunk_rfas(
|
698 |
+
self,
|
699 |
+
rfa_k,
|
700 |
+
rfa_v,
|
701 |
+
layer_idx,
|
702 |
+
):
|
703 |
+
if len(self.rfa_k) <= layer_idx:
|
704 |
+
# prefill stage
|
705 |
+
self.rfa_k.append(rfa_k)
|
706 |
+
self.rfa_v.append(rfa_v)
|
707 |
+
else:
|
708 |
+
# token decoding
|
709 |
+
past_rfa_k = self.rfa_k[layer_idx]
|
710 |
+
past_rfa_v = self.rfa_v[layer_idx]
|
711 |
+
|
712 |
+
if past_rfa_k is not None:
|
713 |
+
rfa_k = torch.cat([past_rfa_k, rfa_k], dim=-2)
|
714 |
+
|
715 |
+
if past_rfa_v is not None:
|
716 |
+
rfa_v = torch.cat([past_rfa_v, rfa_v], dim=-2)
|
717 |
+
|
718 |
+
self.rfa_k[layer_idx] = rfa_k
|
719 |
+
self.rfa_v[layer_idx] = rfa_v
|
720 |
+
|
721 |
+
return rfa_k, rfa_v
|
722 |
+
|
723 |
+
def get_past_window_pos(self, layer_idx):
|
724 |
+
if len(self.past_window_pos) <= layer_idx:
|
725 |
+
return None
|
726 |
+
else:
|
727 |
+
return self.past_window_pos[layer_idx]
|
728 |
+
|
729 |
+
def get_past_window_kv(self, layer_idx):
|
730 |
+
if len(self.past_window_pos) <= layer_idx:
|
731 |
+
return None, None
|
732 |
+
else:
|
733 |
+
return (
|
734 |
+
self.past_window_k[layer_idx][:, :, : self.past_window_pos[layer_idx], :],
|
735 |
+
self.past_window_v[layer_idx][:, :, : self.past_window_pos[layer_idx], :]
|
736 |
+
)
|
737 |
+
|
738 |
+
def get_chunk_rfas(self, layer_idx):
|
739 |
+
if len(self.rfa_k) <= layer_idx:
|
740 |
+
return None, None
|
741 |
+
else:
|
742 |
+
return self.rfa_k[layer_idx], self.rfa_v[layer_idx]
|
743 |
+
|
744 |
+
def get_seq_length(self, layer_idx = 0) -> int:
|
745 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
746 |
+
# layer_idx must be provided since otherwise
|
747 |
+
# any layer > 0 can only get the updated _seen_tokens
|
748 |
+
if len(self.past_window_pos) <= layer_idx:
|
749 |
+
return 0
|
750 |
+
return self._seen_tokens
|
751 |
+
|
752 |
+
def get_max_length(self) -> Optional[int]:
|
753 |
+
"""Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
|
754 |
+
return None
|
755 |
+
|
756 |
+
def update(
|
757 |
+
self,
|
758 |
+
layer_idx: int,
|
759 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
760 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
761 |
+
raise NotImplementedError("`update` is not used in Eva Cache.")
|
eva_prep_kv_kernel.py
ADDED
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import triton
|
5 |
+
import triton.language as tl
|
6 |
+
|
7 |
+
@triton.heuristics(
|
8 |
+
{
|
9 |
+
"EVEN_N": lambda args: args["seqlen"] % args["BLOCK_N"] == 0,
|
10 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
11 |
+
}
|
12 |
+
)
|
13 |
+
@triton.jit
|
14 |
+
def _fwd_eva_prep_kv_kernel(
|
15 |
+
K, # [b, h, n, d]
|
16 |
+
V, # [b, h, n, d]
|
17 |
+
PARAM_MU, # [1, h, 1, 1, d]
|
18 |
+
PARAM_PHI, # [1, h, 1, 1, d]
|
19 |
+
ChunkMask, # [b, h, n, 1]
|
20 |
+
Out_RFA_K, # [b, h, c, d]
|
21 |
+
Out_RFA_V, # [b, h, c, d]
|
22 |
+
softmax_scale,
|
23 |
+
stride_kb, stride_kh, stride_kn,
|
24 |
+
stride_vb, stride_vh, stride_vn,
|
25 |
+
stride_mu_h,
|
26 |
+
stride_phi_h,
|
27 |
+
stride_mb, stride_mn,
|
28 |
+
stride_ok_b, stride_ok_h, stride_ok_c,
|
29 |
+
stride_ov_b, stride_ov_h, stride_ov_c,
|
30 |
+
nheads,
|
31 |
+
seqlen,
|
32 |
+
nchunks,
|
33 |
+
headdim,
|
34 |
+
CACHE_KEY_SEQLEN, # TODO: why keeping this
|
35 |
+
CACHE_KEY_NCHUNKS, # TODO: why keeping this
|
36 |
+
CHUNKS_PER_BLOCK: tl.constexpr,
|
37 |
+
CHUNK_SIZE: tl.constexpr,
|
38 |
+
MASK_TYPE: tl.constexpr,
|
39 |
+
BLOCK_HEADDIM: tl.constexpr,
|
40 |
+
EVEN_N: tl.constexpr,
|
41 |
+
EVEN_HEADDIM: tl.constexpr,
|
42 |
+
BLOCK_N: tl.constexpr,
|
43 |
+
):
|
44 |
+
start_n = tl.program_id(0)
|
45 |
+
offs_bh = tl.program_id(1)
|
46 |
+
offs_h = offs_bh % nheads
|
47 |
+
offs_b = offs_bh // nheads
|
48 |
+
# initialize offsets
|
49 |
+
# we load BLOCK_N keys and values each time, and
|
50 |
+
# reshape it to [CHUNKS_PER_BLOCK, CHUNK_SIZE]
|
51 |
+
offs_c = tl.arange(0, CHUNKS_PER_BLOCK)
|
52 |
+
offs_m = tl.arange(0, CHUNK_SIZE)
|
53 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
54 |
+
|
55 |
+
k_ptrs = (
|
56 |
+
K +
|
57 |
+
offs_b * stride_kb +
|
58 |
+
offs_h * stride_kh +
|
59 |
+
(
|
60 |
+
(
|
61 |
+
start_n * BLOCK_N +
|
62 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
63 |
+
offs_m[None, :, None]
|
64 |
+
) * stride_kn +
|
65 |
+
offs_d[None, None, :]
|
66 |
+
)
|
67 |
+
)
|
68 |
+
v_ptrs = (
|
69 |
+
V +
|
70 |
+
offs_b * stride_vb +
|
71 |
+
offs_h * stride_vh +
|
72 |
+
(
|
73 |
+
(
|
74 |
+
start_n * BLOCK_N +
|
75 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
76 |
+
offs_m[None, :, None]
|
77 |
+
) * stride_vn +
|
78 |
+
offs_d[None, None, :]
|
79 |
+
)
|
80 |
+
)
|
81 |
+
param_mu_ptrs = (
|
82 |
+
PARAM_MU +
|
83 |
+
offs_h * stride_mu_h +
|
84 |
+
offs_d[None, None, :]
|
85 |
+
)
|
86 |
+
param_phi_ptrs = (
|
87 |
+
PARAM_PHI +
|
88 |
+
offs_h * stride_phi_h +
|
89 |
+
offs_d[None, None, :]
|
90 |
+
)
|
91 |
+
log2e = 1.4426950408889634
|
92 |
+
if MASK_TYPE == 1:
|
93 |
+
m_ptrs = (
|
94 |
+
ChunkMask +
|
95 |
+
offs_b * stride_mb +
|
96 |
+
(
|
97 |
+
(
|
98 |
+
start_n * BLOCK_N +
|
99 |
+
offs_c[:, None] * CHUNK_SIZE +
|
100 |
+
offs_m[None, :]
|
101 |
+
) * stride_mn
|
102 |
+
)
|
103 |
+
)
|
104 |
+
if EVEN_N:
|
105 |
+
if EVEN_HEADDIM:
|
106 |
+
k = tl.load(
|
107 |
+
k_ptrs
|
108 |
+
)
|
109 |
+
else:
|
110 |
+
k = tl.load(
|
111 |
+
k_ptrs,
|
112 |
+
mask=offs_d[None, None, :] < headdim,
|
113 |
+
other=0.0
|
114 |
+
)
|
115 |
+
else:
|
116 |
+
if EVEN_HEADDIM:
|
117 |
+
k = tl.load(
|
118 |
+
k_ptrs,
|
119 |
+
mask=(
|
120 |
+
start_n * BLOCK_N +
|
121 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
122 |
+
offs_m[None, :, None]
|
123 |
+
) < seqlen,
|
124 |
+
other=0.0
|
125 |
+
)
|
126 |
+
else:
|
127 |
+
k = tl.load(
|
128 |
+
k_ptrs,
|
129 |
+
mask=(
|
130 |
+
(
|
131 |
+
start_n * BLOCK_N +
|
132 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
133 |
+
offs_m[None, :, None]
|
134 |
+
) < seqlen
|
135 |
+
) & (offs_d[None, None, :] < headdim),
|
136 |
+
other=0.0
|
137 |
+
)
|
138 |
+
|
139 |
+
param_mu = tl.load(param_mu_ptrs).to(k.dtype)
|
140 |
+
rfa_k_c_w = tl.zeros([CHUNKS_PER_BLOCK, CHUNK_SIZE], dtype=tl.float32)
|
141 |
+
rfa_k_c_w += tl.sum(k * param_mu, axis=-1)
|
142 |
+
rfa_k_c_w *= log2e
|
143 |
+
if MASK_TYPE == 1:
|
144 |
+
if EVEN_N:
|
145 |
+
mask = tl.load(
|
146 |
+
m_ptrs
|
147 |
+
).to(tl.float32)
|
148 |
+
else:
|
149 |
+
mask = tl.load(
|
150 |
+
m_ptrs,
|
151 |
+
mask=(
|
152 |
+
start_n * BLOCK_N +
|
153 |
+
offs_c[:, None] * CHUNK_SIZE +
|
154 |
+
offs_m[None, :]
|
155 |
+
) < seqlen,
|
156 |
+
other=0.0,
|
157 |
+
).to(tl.float32)
|
158 |
+
rfa_k_c_w = rfa_k_c_w + mask
|
159 |
+
|
160 |
+
rfa_k_c_w = tl.exp2(rfa_k_c_w - tl.max(rfa_k_c_w, axis=-1)[:, None])
|
161 |
+
rfa_k_c_w = rfa_k_c_w / tl.sum(rfa_k_c_w, axis=-1)[:, None]
|
162 |
+
rfa_k_c = tl.sum(k * rfa_k_c_w[:, :, None].to(k.dtype), axis=-2)
|
163 |
+
# TODO: understand why rematerialize offsets to save registers?
|
164 |
+
offs_out_c = start_n * CHUNKS_PER_BLOCK + tl.arange(0, CHUNKS_PER_BLOCK)
|
165 |
+
out_rfa_k_ptrs = (
|
166 |
+
Out_RFA_K +
|
167 |
+
offs_b * stride_ok_b +
|
168 |
+
offs_h * stride_ok_h +
|
169 |
+
(offs_out_c[:, None] * stride_ok_c + offs_d[None, :])
|
170 |
+
)
|
171 |
+
|
172 |
+
if EVEN_N:
|
173 |
+
if EVEN_HEADDIM:
|
174 |
+
tl.store(
|
175 |
+
out_rfa_k_ptrs, rfa_k_c
|
176 |
+
)
|
177 |
+
else:
|
178 |
+
tl.store(
|
179 |
+
out_rfa_k_ptrs, rfa_k_c,
|
180 |
+
mask=offs_d[None, :] < headdim
|
181 |
+
)
|
182 |
+
else:
|
183 |
+
if EVEN_HEADDIM:
|
184 |
+
tl.store(
|
185 |
+
out_rfa_k_ptrs, rfa_k_c,
|
186 |
+
mask=offs_out_c[:, None] < nchunks
|
187 |
+
)
|
188 |
+
else:
|
189 |
+
tl.store(
|
190 |
+
out_rfa_k_ptrs, rfa_k_c,
|
191 |
+
mask=(offs_out_c[:, None] < nchunks) & (offs_d[None, :] < headdim)
|
192 |
+
)
|
193 |
+
|
194 |
+
|
195 |
+
param_phi = tl.load(param_phi_ptrs).to(k.dtype)
|
196 |
+
rfa_v_c_w = tl.zeros([CHUNKS_PER_BLOCK, CHUNK_SIZE], dtype=tl.float32)
|
197 |
+
rfa_v_c_w += tl.sum(k * param_phi, axis=-1)
|
198 |
+
rfa_v_c_w -= (0.5 * tl.sum(k * k, axis=-1))
|
199 |
+
rfa_v_c_w *= log2e * softmax_scale
|
200 |
+
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
201 |
+
rfa_v_c_w += tl.where(
|
202 |
+
(
|
203 |
+
start_n * BLOCK_N +
|
204 |
+
offs_c[:, None] * CHUNK_SIZE +
|
205 |
+
offs_m[None, :]
|
206 |
+
) < seqlen,
|
207 |
+
0,
|
208 |
+
float("-inf")
|
209 |
+
)
|
210 |
+
|
211 |
+
if MASK_TYPE == 1:
|
212 |
+
rfa_v_c_w = rfa_v_c_w + mask
|
213 |
+
|
214 |
+
if EVEN_N:
|
215 |
+
if EVEN_HEADDIM:
|
216 |
+
v = tl.load(
|
217 |
+
v_ptrs
|
218 |
+
)
|
219 |
+
else:
|
220 |
+
v = tl.load(
|
221 |
+
v_ptrs,
|
222 |
+
mask=offs_d[None, None, :] < headdim,
|
223 |
+
other=0.0
|
224 |
+
)
|
225 |
+
else:
|
226 |
+
if EVEN_HEADDIM:
|
227 |
+
v = tl.load(
|
228 |
+
v_ptrs,
|
229 |
+
mask=(
|
230 |
+
start_n * BLOCK_N +
|
231 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
232 |
+
offs_m[None, :, None]
|
233 |
+
) < seqlen,
|
234 |
+
other=0.0
|
235 |
+
)
|
236 |
+
else:
|
237 |
+
v = tl.load(
|
238 |
+
v_ptrs,
|
239 |
+
mask=(
|
240 |
+
(
|
241 |
+
start_n * BLOCK_N +
|
242 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
243 |
+
offs_m[None, :, None]
|
244 |
+
) < seqlen
|
245 |
+
) & (offs_d[None, None, :] < headdim),
|
246 |
+
other=0.0
|
247 |
+
)
|
248 |
+
|
249 |
+
rfa_v_c_w = tl.exp2(rfa_v_c_w - tl.max(rfa_v_c_w, axis=-1)[:, None])
|
250 |
+
rfa_v_c_w = rfa_v_c_w / tl.sum(rfa_v_c_w, axis=-1)[:, None]
|
251 |
+
rfa_v_c = tl.sum(v * rfa_v_c_w[:, :, None].to(v.dtype), axis=-2)
|
252 |
+
|
253 |
+
offs_out_c = start_n * CHUNKS_PER_BLOCK + tl.arange(0, CHUNKS_PER_BLOCK)
|
254 |
+
out_rfa_v_ptrs = (
|
255 |
+
Out_RFA_V +
|
256 |
+
offs_b * stride_ov_b +
|
257 |
+
offs_h * stride_ov_h +
|
258 |
+
(offs_out_c[:, None] * stride_ov_c + offs_d[None, :])
|
259 |
+
)
|
260 |
+
if EVEN_N:
|
261 |
+
if EVEN_HEADDIM:
|
262 |
+
tl.store(
|
263 |
+
out_rfa_v_ptrs, rfa_v_c
|
264 |
+
)
|
265 |
+
else:
|
266 |
+
tl.store(
|
267 |
+
out_rfa_v_ptrs, rfa_v_c,
|
268 |
+
mask=offs_d[None, :] < headdim
|
269 |
+
)
|
270 |
+
else:
|
271 |
+
if EVEN_HEADDIM:
|
272 |
+
tl.store(
|
273 |
+
out_rfa_v_ptrs, rfa_v_c,
|
274 |
+
mask=offs_out_c[:, None] < nchunks
|
275 |
+
)
|
276 |
+
else:
|
277 |
+
tl.store(
|
278 |
+
out_rfa_v_ptrs, rfa_v_c,
|
279 |
+
mask=(offs_out_c[:, None] < nchunks) & (offs_d[None, :] < headdim)
|
280 |
+
)
|
281 |
+
|
282 |
+
def triton_eva_prep_kv_fwd(k, v, param_mu, param_phi, chunk_mask, softmax_scale, chunksize):
|
283 |
+
k, v, param_mu, param_phi = [
|
284 |
+
x if x.stride(-1) == 1 else x.contiguous()
|
285 |
+
for x in [k, v, param_mu, param_phi]
|
286 |
+
]
|
287 |
+
|
288 |
+
# shape constraints
|
289 |
+
batch, nheads, seqlen, head_dim = k.shape
|
290 |
+
assert seqlen % chunksize == 0, "seqlen must be divisible by chunksize"
|
291 |
+
nchunks = seqlen // chunksize
|
292 |
+
assert k.shape == (batch, nheads, seqlen, head_dim)
|
293 |
+
assert v.shape == (batch, nheads, seqlen, head_dim)
|
294 |
+
assert param_mu.shape == (1, nheads, 1, 1, head_dim)
|
295 |
+
assert param_phi.shape == (1, nheads, 1, 1, head_dim)
|
296 |
+
assert head_dim <= 128, "We only test head dimensions up to 128"
|
297 |
+
assert k.dtype == v.dtype == param_mu.dtype == param_phi.dtype, "All tensors must have the same type"
|
298 |
+
assert k.dtype in [torch.bfloat16, torch.float], "Only support bf16 and fp32 for now"
|
299 |
+
assert k.is_cuda and v.is_cuda
|
300 |
+
softmax_scale = softmax_scale or 1.0 / math.sqrt(head_dim)
|
301 |
+
|
302 |
+
mask_type = 0
|
303 |
+
if chunk_mask is not None:
|
304 |
+
mask_type = 1
|
305 |
+
assert chunk_mask.dtype == k.dtype
|
306 |
+
assert chunk_mask.is_cuda
|
307 |
+
assert chunk_mask.dim() == 4
|
308 |
+
assert chunk_mask.shape == (batch, 1, seqlen, 1)
|
309 |
+
if chunk_mask.stride(-1) != 1:
|
310 |
+
chunk_mask = chunk_mask.contiguous()
|
311 |
+
mask_strides = (
|
312 |
+
(chunk_mask.stride(0), chunk_mask.stride(2))
|
313 |
+
if mask_type == 1 else
|
314 |
+
(0, 0)
|
315 |
+
)
|
316 |
+
out_rfa_k = torch.empty((batch, nheads, nchunks, head_dim), dtype=k.dtype, device=k.device)
|
317 |
+
out_rfa_v = torch.empty((batch, nheads, nchunks, head_dim), dtype=v.dtype, device=v.device)
|
318 |
+
|
319 |
+
BLOCK_HEADDIM = max(triton.next_power_of_2(head_dim), 16)
|
320 |
+
BLOCK = 128
|
321 |
+
num_warps = 4 if head_dim <= 64 else 8
|
322 |
+
|
323 |
+
assert (BLOCK > chunksize) & (BLOCK % chunksize) == 0, "BLOCK must be divisible by chunksize"
|
324 |
+
chunks_per_block = BLOCK // chunksize
|
325 |
+
|
326 |
+
grid = lambda META: (triton.cdiv(seqlen, META["BLOCK_N"]), batch * nheads)
|
327 |
+
_fwd_eva_prep_kv_kernel[grid](
|
328 |
+
k,
|
329 |
+
v,
|
330 |
+
param_mu,
|
331 |
+
param_phi,
|
332 |
+
chunk_mask,
|
333 |
+
out_rfa_k,
|
334 |
+
out_rfa_v,
|
335 |
+
softmax_scale,
|
336 |
+
k.stride(0), k.stride(1), k.stride(2),
|
337 |
+
v.stride(0), v.stride(1), v.stride(2),
|
338 |
+
param_mu.stride(1),
|
339 |
+
param_phi.stride(1),
|
340 |
+
mask_strides[0], mask_strides[1],
|
341 |
+
out_rfa_k.stride(0), out_rfa_k.stride(1), out_rfa_k.stride(2),
|
342 |
+
out_rfa_v.stride(0), out_rfa_v.stride(1), out_rfa_v.stride(2),
|
343 |
+
nheads,
|
344 |
+
seqlen,
|
345 |
+
nchunks,
|
346 |
+
head_dim,
|
347 |
+
seqlen // 32,
|
348 |
+
nchunks // 32,
|
349 |
+
chunks_per_block,
|
350 |
+
chunksize,
|
351 |
+
mask_type,
|
352 |
+
BLOCK_HEADDIM,
|
353 |
+
BLOCK_N=BLOCK,
|
354 |
+
num_warps=num_warps,
|
355 |
+
num_stages=1,
|
356 |
+
)
|
357 |
+
return out_rfa_k, out_rfa_v
|
eva_pt_ref.py
ADDED
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple, Union
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
MASK_MIN_VALUE = -10e10
|
6 |
+
|
7 |
+
def rotate_half(x: torch.Tensor) -> torch.Tensor:
|
8 |
+
"""
|
9 |
+
Rotates half the hidden dims (last dim) of the input.
|
10 |
+
Args:
|
11 |
+
x: Rotary embedded tensor
|
12 |
+
Return:
|
13 |
+
Tensor with half of last dim negated and rotated to the front.
|
14 |
+
"""
|
15 |
+
x1, x2 = x.split(x.shape[-1] // 2, dim=-1)
|
16 |
+
return torch.cat((-x2, x1), dim=-1)
|
17 |
+
|
18 |
+
def apply_rotary_pos_emb(q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor,
|
19 |
+
position_ids: torch.Tensor) -> torch.Tensor:
|
20 |
+
"""
|
21 |
+
Apply rotary embedding (cos, sin) to the query and key tensor on the sequence dimension.
|
22 |
+
|
23 |
+
The legends for dimensions are defined as:
|
24 |
+
num_heads: number of attention heads
|
25 |
+
current_seq_len: the current batch's sequence length, should be either 1 or max_seq_len
|
26 |
+
max_seq_len: the static sequence length, different from current_seq_len in cached inference case where it is always
|
27 |
+
maximum lenghth, e.g. the length of static sequence length of KV cache
|
28 |
+
|
29 |
+
|
30 |
+
Args:
|
31 |
+
q: Query tensor, of size (batch_size, num_heads, current_seq_len, head_dim)
|
32 |
+
k: Key tensor, of size (batch_size, num_key_value_heads, current_seq_len, head_dim)
|
33 |
+
cos: Cosine base of rotary embedding, of size (max_seq_len, head_dim)
|
34 |
+
sin: Sine base of rotary embedding, of size (max_seq_len, head_dim)
|
35 |
+
position_ids: The position indices of the tokens corresponding to the query and key tensors. It has a size of
|
36 |
+
(batch_size, current_seq_len).
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
Embedded query and key tensor of same size as input.
|
40 |
+
|
41 |
+
"""
|
42 |
+
bs, nheads, cur_seq_len, head_dim = q.shape
|
43 |
+
assert len(
|
44 |
+
k.shape) == 4, f"k should be of shape (batch_size, num_heads, current_seq_len, head_dim), got {k.shape} instead"
|
45 |
+
assert k.shape[0] == bs, f"k has a different batch_size {k.shape[0]} compared to q {bs}"
|
46 |
+
assert list(k.shape[2:]) == [cur_seq_len,
|
47 |
+
head_dim], f"k has different current_seq_len and/or head_dim compared to q"
|
48 |
+
assert cos.shape[3] == head_dim, f"cos should have dim of head dim {head_dim}, got {cos.shape[3]} instead"
|
49 |
+
assert list(position_ids.shape) in [[bs, cur_seq_len], [1, cur_seq_len]],\
|
50 |
+
f"position_ids should be of shape {[bs, cur_seq_len]} or {[1, cur_seq_len]}, got {position_ids.shape} instead"
|
51 |
+
|
52 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
53 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
54 |
+
return q_embed, k_embed
|
55 |
+
|
56 |
+
def attention_op(
|
57 |
+
q,
|
58 |
+
k,
|
59 |
+
v,
|
60 |
+
attn_mask,
|
61 |
+
mixedp_attn,
|
62 |
+
head_dim_scaling
|
63 |
+
):
|
64 |
+
attn = torch.matmul(q, k.transpose(-2, -1))
|
65 |
+
if mixedp_attn:
|
66 |
+
attn = attn.to(torch.float)
|
67 |
+
attn = attn * head_dim_scaling
|
68 |
+
if attn_mask is not None:
|
69 |
+
attn = attn.masked_fill(attn_mask, MASK_MIN_VALUE)
|
70 |
+
|
71 |
+
attn_weights = torch.softmax(attn, dim=-1).to(q.dtype)
|
72 |
+
attn_output = torch.matmul(attn_weights, v)
|
73 |
+
return attn_output
|
74 |
+
|
75 |
+
def prm_projection(
|
76 |
+
x: torch.Tensor,
|
77 |
+
projection_matrix: torch.Tensor,
|
78 |
+
mixedp_attn: bool = False
|
79 |
+
):
|
80 |
+
"""
|
81 |
+
Constructs nonnegative kernel features for fast softmax attention.
|
82 |
+
Args:
|
83 |
+
x: input for which features are computed
|
84 |
+
projection_matrix: random matrix used to compute features
|
85 |
+
Returns:
|
86 |
+
Random features for fast attention.
|
87 |
+
"""
|
88 |
+
# x : [..., m, d]
|
89 |
+
# proj : [..., r, d]
|
90 |
+
scaling_factor = (x.shape[-1] ** -0.5)
|
91 |
+
proj_x = torch.matmul(projection_matrix, x.transpose(-1, -2)) # [..., r, m]
|
92 |
+
norm = torch.sum(x ** 2, dim=-1).unsqueeze(-2) * 0.5 # [..., 1]
|
93 |
+
if mixedp_attn:
|
94 |
+
proj_x = proj_x.to(torch.float)
|
95 |
+
norm = norm.to(torch.float)
|
96 |
+
phi_x = scaling_factor * (proj_x - norm)
|
97 |
+
return phi_x
|
98 |
+
|
99 |
+
class EvaAttention(nn.Module):
|
100 |
+
def __init__(self, config, layer_idx: Optional[int] = None):
|
101 |
+
super().__init__()
|
102 |
+
self.config = config
|
103 |
+
self.layer_idx = layer_idx
|
104 |
+
self.hidden_size = config.hidden_size
|
105 |
+
self.num_heads = config.num_attention_heads
|
106 |
+
self.head_dim = self.hidden_size // self.num_heads
|
107 |
+
self.head_dim_scaling = self.head_dim ** -0.5
|
108 |
+
|
109 |
+
self.max_position_embeddings = config.max_position_embeddings
|
110 |
+
|
111 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
112 |
+
raise ValueError(
|
113 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
114 |
+
f" and `num_heads`: {self.num_heads})."
|
115 |
+
)
|
116 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
117 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
118 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
119 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
120 |
+
|
121 |
+
self.window_size = config.window_size
|
122 |
+
|
123 |
+
self.num_chunks = config.num_chunks
|
124 |
+
self.chunk_size = config.chunk_size
|
125 |
+
if self.chunk_size is not None:
|
126 |
+
assert self.window_size >= self.chunk_size and self.window_size % self.chunk_size == 0
|
127 |
+
# chunk_size overrides the number of landmarks
|
128 |
+
self.num_chunks = None
|
129 |
+
|
130 |
+
self.chunks_per_window = int(self.window_size // self.chunk_size)
|
131 |
+
self.random_feature_dim = 1
|
132 |
+
self.adaptive_phi = nn.Parameter(
|
133 |
+
torch.randn(
|
134 |
+
1,
|
135 |
+
self.num_heads,
|
136 |
+
1,
|
137 |
+
1,
|
138 |
+
self.head_dim
|
139 |
+
).clamp(-1., 1.) * self.head_dim_scaling
|
140 |
+
)
|
141 |
+
self.adaptive_mu_k = nn.Parameter(
|
142 |
+
torch.randn(
|
143 |
+
1,
|
144 |
+
self.num_heads,
|
145 |
+
1,
|
146 |
+
1,
|
147 |
+
self.head_dim
|
148 |
+
).clamp(-1., 1.) * self.head_dim_scaling
|
149 |
+
)
|
150 |
+
|
151 |
+
def _generate_feature_map(self, rf_q, rf_k, rf_v):
|
152 |
+
rf_k_logits = torch.sum(self.adaptive_mu_k.to(rf_k.dtype) * rf_k, dim=-1, keepdim=True) # b h c m 1
|
153 |
+
if self.config.mixedp_attn:
|
154 |
+
rf_k_logits = rf_k_logits.to(torch.float)
|
155 |
+
rf_k_weights = torch.softmax(rf_k_logits, dim=-2).to(rf_k.dtype)
|
156 |
+
rf_k_bar = torch.sum(rf_k_weights * rf_k, dim=-2)
|
157 |
+
weights = self.adaptive_phi.to(rf_k.dtype)
|
158 |
+
return weights, rf_k_bar
|
159 |
+
|
160 |
+
def _calculate_chunk_rfa_cache(self, rf_q, rf_k, rf_v, weights, rf_mask=None):
|
161 |
+
proj_x = torch.sum(weights * rf_k, dim=-1, keepdim=True)
|
162 |
+
norm = torch.sum(rf_k ** 2, dim=-1, keepdim=True) * 0.5 # [..., 1]
|
163 |
+
if self.config.mixedp_attn:
|
164 |
+
proj_x = proj_x.to(torch.float)
|
165 |
+
norm = norm.to(torch.float)
|
166 |
+
log_phi_k = self.head_dim_scaling * (proj_x - norm)
|
167 |
+
|
168 |
+
if rf_mask is not None:
|
169 |
+
log_phi_k = log_phi_k.masked_fill(rf_mask, MASK_MIN_VALUE)
|
170 |
+
|
171 |
+
# [b, h, c, m, r]
|
172 |
+
softmax_phi_k = torch.softmax(log_phi_k, dim=-2).to(rf_k.dtype)
|
173 |
+
softmax_phi_k_v = torch.sum(softmax_phi_k * rf_v, dim=-2)
|
174 |
+
# [b, h, c, r, m] [b, h, c, m, d] -> [b, h, c, r, d]
|
175 |
+
# softmax_phi_k_v = torch.matmul(softmax_phi_k.transpose(-1, -2), rf_v).squeeze(-2)
|
176 |
+
log_sum_phi_k = None
|
177 |
+
return softmax_phi_k_v, log_sum_phi_k
|
178 |
+
|
179 |
+
def _calculate_chunk_rfa(self, q, softmax_phi_k_v, log_sum_phi_k, weights):
|
180 |
+
if self.random_feature_dim == 1:
|
181 |
+
# when r = 1, the snis weights becomes 1, so this takes no effect
|
182 |
+
# [b, h, c, r, d] -> [b, h, c, d]
|
183 |
+
return softmax_phi_k_v
|
184 |
+
else:
|
185 |
+
# [b, h, c, r, d] [b, h, 1, s, d] -> [b, h, c, r, s]
|
186 |
+
log_phi_q = prm_projection(q.unsqueeze(-3), weights, self.config.mixedp_attn)
|
187 |
+
# [b, h, c, r, s] [b, h, c, r, 1] -> [b, h, c, r, s]
|
188 |
+
sniw = torch.softmax(log_phi_q + log_sum_phi_k, dim=-1).to(q.dtype)
|
189 |
+
# [b, h, c, r, s] [b, h, c, r, d] -> [b, h, c, s, d] -> [b, h, s, c, d]
|
190 |
+
rfa_per_chunk = torch.matmul(sniw.transpose(-1, -2), softmax_phi_k_v).transpose(-3, -2)
|
191 |
+
return rfa_per_chunk
|
192 |
+
|
193 |
+
def window_partition(self, x, window_size=None):
|
194 |
+
window_size = window_size if window_size is not None else self.window_size
|
195 |
+
|
196 |
+
gw, d = x.shape[-2:]
|
197 |
+
leading_dims = x.shape[:-2]
|
198 |
+
n_groups = gw // window_size
|
199 |
+
return x.reshape(*leading_dims, n_groups, window_size, d)
|
200 |
+
|
201 |
+
def window_merge(self, x, window_size=None):
|
202 |
+
g, w, d = x.shape[-3:]
|
203 |
+
leading_dims = x.shape[:-3]
|
204 |
+
return x.reshape(*leading_dims, g * w, d)
|
205 |
+
|
206 |
+
def forward(
|
207 |
+
self,
|
208 |
+
hidden_states: torch.Tensor,
|
209 |
+
attention_mask: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None,
|
210 |
+
position_ids: Optional[torch.LongTensor] = None,
|
211 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
212 |
+
output_attentions: bool = False,
|
213 |
+
use_cache: bool = False,
|
214 |
+
cos: Optional[torch.Tensor] = None,
|
215 |
+
sin: Optional[torch.Tensor] = None,
|
216 |
+
multibyte_decoding: Optional[bool] = False,
|
217 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
218 |
+
assert not output_attentions
|
219 |
+
bsz, q_len, _ = hidden_states.size()
|
220 |
+
|
221 |
+
############################################
|
222 |
+
# initialize past states if not provided
|
223 |
+
############################################
|
224 |
+
if use_cache and past_key_value is None:
|
225 |
+
raise ValueError
|
226 |
+
if use_cache and multibyte_decoding:
|
227 |
+
raise NotImplementedError("Multibyte decoding is not supported for PyTorch native implementation")
|
228 |
+
# assert isinstance(attention_mask, tuple)
|
229 |
+
if len(attention_mask) == 4:
|
230 |
+
assert use_cache
|
231 |
+
prev_causal_mask, cur_causal_mask, chunk_causal_mask, intra_chunk_mask = attention_mask
|
232 |
+
elif len(attention_mask) == 3:
|
233 |
+
assert not use_cache
|
234 |
+
window_causal_mask, chunk_causal_mask, intra_chunk_mask = attention_mask
|
235 |
+
else:
|
236 |
+
raise NotImplementedError("Only attention-mask tuple with length 2 or 3 is supported")
|
237 |
+
|
238 |
+
############################################
|
239 |
+
# compute q, k, v from hidden states
|
240 |
+
############################################
|
241 |
+
# [b, h, q_len, d]
|
242 |
+
q = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
243 |
+
# [b, h, kv_len, d]
|
244 |
+
k = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
245 |
+
# [b, h, kv_len, d]
|
246 |
+
v = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
247 |
+
|
248 |
+
if use_cache:
|
249 |
+
past_key_value.update_past_len(q.shape[-2], self.layer_idx)
|
250 |
+
|
251 |
+
############################################
|
252 |
+
# apply rotary positional embeddings to q, k
|
253 |
+
############################################
|
254 |
+
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
|
255 |
+
|
256 |
+
############################################
|
257 |
+
# compute q, k, v stats for the local window
|
258 |
+
############################################
|
259 |
+
if use_cache:
|
260 |
+
(prev_w_q, prev_w_k, prev_w_v), (cur_w_q, cur_w_k, cur_w_v) = past_key_value.update_singletons(
|
261 |
+
q,
|
262 |
+
k,
|
263 |
+
v,
|
264 |
+
self.layer_idx,
|
265 |
+
self.window_size,
|
266 |
+
self.singleton_update
|
267 |
+
)
|
268 |
+
else:
|
269 |
+
prev_w_q = self.window_partition(q) # [b, h, w, i, d]
|
270 |
+
prev_w_k = self.window_partition(k) # [b, h, w, j, d]
|
271 |
+
prev_w_v = self.window_partition(v) # [b, h, w, j, d]
|
272 |
+
# during training, we assume window_size divides seq_len so no remainders
|
273 |
+
cur_w_q = cur_w_k = cur_w_v = None
|
274 |
+
|
275 |
+
############################################
|
276 |
+
# compute q, k, v stats for chunk-level RFAs
|
277 |
+
############################################
|
278 |
+
if use_cache:
|
279 |
+
dump_q, dump_k, dump_v = past_key_value.update_chunks(q, k, v, self.layer_idx, self.chunk_size)
|
280 |
+
else:
|
281 |
+
dump_q, dump_k, dump_v = q, k, v
|
282 |
+
|
283 |
+
if use_cache:
|
284 |
+
prev_s_mask, cur_s_mask, prev_chunk_mask, cur_chunk_mask, dump_rf_mask = past_key_value.update_mask(
|
285 |
+
prev_s_mask=prev_causal_mask,
|
286 |
+
cur_s_mask=cur_causal_mask,
|
287 |
+
chunk_mask=chunk_causal_mask,
|
288 |
+
rf_mask=intra_chunk_mask,
|
289 |
+
layer_idx=self.layer_idx,
|
290 |
+
window_size=self.window_size,
|
291 |
+
chunk_size=self.chunk_size,
|
292 |
+
singleton_update=self.singleton_update
|
293 |
+
)
|
294 |
+
else:
|
295 |
+
prev_s_mask = window_causal_mask # [1, 1, w, i, j]
|
296 |
+
cur_s_mask = None
|
297 |
+
prev_chunk_mask = self.window_partition(chunk_causal_mask)
|
298 |
+
cur_chunk_mask = None
|
299 |
+
dump_rf_mask = intra_chunk_mask
|
300 |
+
if prev_s_mask.shape[-3] == 1:
|
301 |
+
# need to expand
|
302 |
+
prev_s_mask = prev_s_mask.expand(-1, -1, prev_chunk_mask.shape[-3], -1, -1)
|
303 |
+
|
304 |
+
if (
|
305 |
+
dump_q is not None and
|
306 |
+
dump_k is not None and
|
307 |
+
dump_v is not None
|
308 |
+
):
|
309 |
+
# [b, h, c, j, d]
|
310 |
+
rf_q = self.window_partition(dump_q, window_size=self.chunk_size)
|
311 |
+
# [b, h, c, j, d]
|
312 |
+
rf_k = self.window_partition(dump_k, window_size=self.chunk_size)
|
313 |
+
# [b, h, c, j, d]
|
314 |
+
rf_v = self.window_partition(dump_v, window_size=self.chunk_size)
|
315 |
+
|
316 |
+
if dump_rf_mask is not None:
|
317 |
+
rf_mask = self.window_partition(dump_rf_mask, window_size=self.chunk_size)
|
318 |
+
rf_q = rf_q.masked_fill(rf_mask, 0.)
|
319 |
+
rf_k = rf_k.masked_fill(rf_mask, 0.)
|
320 |
+
rf_v = rf_v.masked_fill(rf_mask, 0.)
|
321 |
+
else:
|
322 |
+
rf_mask = None
|
323 |
+
else:
|
324 |
+
rf_q = None
|
325 |
+
rf_k = None
|
326 |
+
rf_v = None
|
327 |
+
rf_mask = None
|
328 |
+
|
329 |
+
|
330 |
+
if rf_q is not None:
|
331 |
+
# import pdb; pdb.set_trace()
|
332 |
+
weights, rf_k_bar = self._generate_feature_map(rf_q, rf_k, rf_v)
|
333 |
+
softmax_phi_k_v, log_sum_phi_k = self._calculate_chunk_rfa_cache(rf_q, rf_k, rf_v, weights, rf_mask=rf_mask)
|
334 |
+
if use_cache:
|
335 |
+
softmax_phi_k_v, log_sum_phi_k, rf_k_bar = past_key_value.update_chunk_rfas(
|
336 |
+
softmax_phi_k_v, log_sum_phi_k, rf_k_bar, self.layer_idx, 1
|
337 |
+
)
|
338 |
+
elif use_cache:
|
339 |
+
weights = None
|
340 |
+
softmax_phi_k_v, log_sum_phi_k, rf_k_bar = past_key_value.get_chunk_rfas(self.layer_idx)
|
341 |
+
else:
|
342 |
+
weights = None
|
343 |
+
softmax_phi_k_v = None
|
344 |
+
log_sum_phi_k = None
|
345 |
+
rf_k_bar = None
|
346 |
+
|
347 |
+
if rf_k_bar is not None:
|
348 |
+
rfa_per_chunk = self._calculate_chunk_rfa(q, softmax_phi_k_v, log_sum_phi_k, weights)
|
349 |
+
############################################
|
350 |
+
# compute meta-attention weights for
|
351 |
+
# - group-wise RFAs and
|
352 |
+
# - singletons (equivalent to exact local attention)
|
353 |
+
############################################
|
354 |
+
if prev_w_k is not None:
|
355 |
+
if rf_k_bar is not None:
|
356 |
+
num_windows = prev_w_k.shape[-3]
|
357 |
+
# rf_k_bar and rfa_per_chunk take the shape [b, h, c, d]
|
358 |
+
# -> [b, h, 1, c, d] -> [b, h, w, c, d]
|
359 |
+
prev_rf_k_bar = rf_k_bar.unsqueeze(-3).expand(-1, -1, num_windows, -1, -1)
|
360 |
+
prev_rfa_per_chunk = rfa_per_chunk.unsqueeze(-3).expand(-1, -1, num_windows, -1, -1)
|
361 |
+
prev_agg_k = torch.cat([prev_w_k, prev_rf_k_bar], dim=-2)
|
362 |
+
prev_agg_v = torch.cat([prev_w_v, prev_rfa_per_chunk], dim=-2)
|
363 |
+
|
364 |
+
prev_attn_mask = torch.cat([prev_s_mask, prev_chunk_mask], dim=-1)
|
365 |
+
else:
|
366 |
+
prev_agg_k = prev_w_k
|
367 |
+
prev_agg_v = prev_w_v
|
368 |
+
prev_attn_mask = prev_s_mask
|
369 |
+
|
370 |
+
prev_attn_output = attention_op(
|
371 |
+
q=prev_w_q,
|
372 |
+
k=prev_agg_k,
|
373 |
+
v=prev_agg_v,
|
374 |
+
attn_mask=prev_attn_mask,
|
375 |
+
mixedp_attn=self.config.mixedp_attn,
|
376 |
+
head_dim_scaling=self.head_dim_scaling
|
377 |
+
)
|
378 |
+
prev_attn_output = self.window_merge(prev_attn_output)
|
379 |
+
|
380 |
+
if cur_w_k is not None:
|
381 |
+
if rf_k_bar is not None:
|
382 |
+
# rf_k_bar and rfa_per_chunk take the shape [b, h, c, d]
|
383 |
+
# cur_w_k and cur_w_v also has shape [b, h, m, d]
|
384 |
+
cur_agg_k = torch.cat([cur_w_k, rf_k_bar], dim=-2)
|
385 |
+
cur_agg_v = torch.cat([cur_w_v, rfa_per_chunk], dim=-2)
|
386 |
+
|
387 |
+
cur_attn_mask = torch.cat([cur_s_mask, cur_chunk_mask], dim=-1)
|
388 |
+
else:
|
389 |
+
cur_agg_k = cur_w_k
|
390 |
+
cur_agg_v = cur_w_v
|
391 |
+
cur_attn_mask = cur_s_mask
|
392 |
+
|
393 |
+
cur_attn_output = attention_op(
|
394 |
+
q=cur_w_q,
|
395 |
+
k=cur_agg_k,
|
396 |
+
v=cur_agg_v,
|
397 |
+
attn_mask=cur_attn_mask,
|
398 |
+
mixedp_attn=self.config.mixedp_attn,
|
399 |
+
head_dim_scaling=self.head_dim_scaling
|
400 |
+
)
|
401 |
+
|
402 |
+
if prev_w_k is not None and cur_w_k is not None:
|
403 |
+
attn_output = torch.cat([prev_attn_output, cur_attn_output], dim=-2)
|
404 |
+
elif prev_w_k is not None:
|
405 |
+
attn_output = prev_attn_output
|
406 |
+
elif cur_w_k is not None:
|
407 |
+
attn_output = cur_attn_output
|
408 |
+
else:
|
409 |
+
raise ValueError("There must be some bug")
|
410 |
+
|
411 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
412 |
+
raise ValueError(
|
413 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
414 |
+
f" {attn_output.size()}"
|
415 |
+
)
|
416 |
+
|
417 |
+
attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size)
|
418 |
+
attn_output = self.o_proj(attn_output)
|
419 |
+
|
420 |
+
attn_weights = None
|
421 |
+
|
422 |
+
return attn_output, attn_weights, past_key_value
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 11,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.47.1"
|
7 |
+
}
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8f009b49caa79bbd15766b5b29b2dcf4a74a030af1a2043e53c3f15971cf33d
|
3 |
+
size 4994268984
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6131455aa5c8cfb07ecf35a9d7cb99f2f7e3a5e0fc9aa90c0c2e00f7e13d583
|
3 |
+
size 4947590376
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c497c85b8d257c9b78a1db9caccf6f07718b9b0aa06351fc357f64c9ca896b79
|
3 |
+
size 3034842568
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 12976660480
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.self_attn.adaptive_mu_k": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.adaptive_phi": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.adaptive_mu_k": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.adaptive_phi": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
31 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.10.self_attn.adaptive_mu_k": "model-00001-of-00003.safetensors",
|
36 |
+
"model.layers.10.self_attn.adaptive_phi": "model-00001-of-00003.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
38 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
39 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
40 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
41 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
42 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
43 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
44 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
45 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
46 |
+
"model.layers.11.self_attn.adaptive_mu_k": "model-00001-of-00003.safetensors",
|
47 |
+
"model.layers.11.self_attn.adaptive_phi": "model-00001-of-00003.safetensors",
|
48 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
49 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
50 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
51 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
52 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.12.self_attn.adaptive_mu_k": "model-00001-of-00003.safetensors",
|
58 |
+
"model.layers.12.self_attn.adaptive_phi": "model-00001-of-00003.safetensors",
|
59 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
60 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
61 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
62 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
63 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.13.self_attn.adaptive_mu_k": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.13.self_attn.adaptive_phi": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.14.self_attn.adaptive_mu_k": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.14.self_attn.adaptive_phi": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.15.self_attn.adaptive_mu_k": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.15.self_attn.adaptive_phi": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.16.self_attn.adaptive_mu_k": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.16.self_attn.adaptive_phi": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.17.self_attn.adaptive_mu_k": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.17.self_attn.adaptive_phi": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
117 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
118 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
119 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
120 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
121 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
122 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
123 |
+
"model.layers.18.self_attn.adaptive_mu_k": "model-00002-of-00003.safetensors",
|
124 |
+
"model.layers.18.self_attn.adaptive_phi": "model-00002-of-00003.safetensors",
|
125 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.19.self_attn.adaptive_mu_k": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.19.self_attn.adaptive_phi": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
141 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
142 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
143 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
144 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
145 |
+
"model.layers.2.self_attn.adaptive_mu_k": "model-00001-of-00003.safetensors",
|
146 |
+
"model.layers.2.self_attn.adaptive_phi": "model-00001-of-00003.safetensors",
|
147 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
148 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
149 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
150 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
151 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
153 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
154 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
155 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
156 |
+
"model.layers.20.self_attn.adaptive_mu_k": "model-00002-of-00003.safetensors",
|
157 |
+
"model.layers.20.self_attn.adaptive_phi": "model-00002-of-00003.safetensors",
|
158 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
159 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
160 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
161 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
162 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
163 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
164 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
165 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
166 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
167 |
+
"model.layers.21.self_attn.adaptive_mu_k": "model-00002-of-00003.safetensors",
|
168 |
+
"model.layers.21.self_attn.adaptive_phi": "model-00002-of-00003.safetensors",
|
169 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
170 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
171 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
172 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
173 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
174 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
175 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
176 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
177 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
178 |
+
"model.layers.22.self_attn.adaptive_mu_k": "model-00002-of-00003.safetensors",
|
179 |
+
"model.layers.22.self_attn.adaptive_phi": "model-00002-of-00003.safetensors",
|
180 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
181 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
182 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
183 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
184 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
185 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
186 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
187 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
188 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
189 |
+
"model.layers.23.self_attn.adaptive_mu_k": "model-00002-of-00003.safetensors",
|
190 |
+
"model.layers.23.self_attn.adaptive_phi": "model-00002-of-00003.safetensors",
|
191 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
192 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
193 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
194 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
195 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
198 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"model.layers.24.self_attn.adaptive_mu_k": "model-00002-of-00003.safetensors",
|
201 |
+
"model.layers.24.self_attn.adaptive_phi": "model-00002-of-00003.safetensors",
|
202 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
203 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
204 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
205 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
206 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"model.layers.25.self_attn.adaptive_mu_k": "model-00003-of-00003.safetensors",
|
212 |
+
"model.layers.25.self_attn.adaptive_phi": "model-00003-of-00003.safetensors",
|
213 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
216 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
217 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
218 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
219 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
220 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
221 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
222 |
+
"model.layers.26.self_attn.adaptive_mu_k": "model-00003-of-00003.safetensors",
|
223 |
+
"model.layers.26.self_attn.adaptive_phi": "model-00003-of-00003.safetensors",
|
224 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"model.layers.27.self_attn.adaptive_mu_k": "model-00003-of-00003.safetensors",
|
234 |
+
"model.layers.27.self_attn.adaptive_phi": "model-00003-of-00003.safetensors",
|
235 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
243 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
244 |
+
"model.layers.28.self_attn.adaptive_mu_k": "model-00003-of-00003.safetensors",
|
245 |
+
"model.layers.28.self_attn.adaptive_phi": "model-00003-of-00003.safetensors",
|
246 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
247 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
248 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
249 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
250 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
251 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
252 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
253 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
254 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
255 |
+
"model.layers.29.self_attn.adaptive_mu_k": "model-00003-of-00003.safetensors",
|
256 |
+
"model.layers.29.self_attn.adaptive_phi": "model-00003-of-00003.safetensors",
|
257 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
258 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
259 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
260 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
261 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.layers.3.self_attn.adaptive_mu_k": "model-00001-of-00003.safetensors",
|
267 |
+
"model.layers.3.self_attn.adaptive_phi": "model-00001-of-00003.safetensors",
|
268 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
273 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
274 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
275 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
276 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
277 |
+
"model.layers.30.self_attn.adaptive_mu_k": "model-00003-of-00003.safetensors",
|
278 |
+
"model.layers.30.self_attn.adaptive_phi": "model-00003-of-00003.safetensors",
|
279 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
280 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
281 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
282 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
283 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
284 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
285 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
286 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
287 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
288 |
+
"model.layers.31.self_attn.adaptive_mu_k": "model-00003-of-00003.safetensors",
|
289 |
+
"model.layers.31.self_attn.adaptive_phi": "model-00003-of-00003.safetensors",
|
290 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
291 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
292 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
293 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
294 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
297 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
298 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
299 |
+
"model.layers.4.self_attn.adaptive_mu_k": "model-00001-of-00003.safetensors",
|
300 |
+
"model.layers.4.self_attn.adaptive_phi": "model-00001-of-00003.safetensors",
|
301 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
302 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
303 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
304 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
305 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
306 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
307 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
308 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
309 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
310 |
+
"model.layers.5.self_attn.adaptive_mu_k": "model-00001-of-00003.safetensors",
|
311 |
+
"model.layers.5.self_attn.adaptive_phi": "model-00001-of-00003.safetensors",
|
312 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
313 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
314 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
315 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
316 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
317 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
318 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
319 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
320 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
321 |
+
"model.layers.6.self_attn.adaptive_mu_k": "model-00001-of-00003.safetensors",
|
322 |
+
"model.layers.6.self_attn.adaptive_phi": "model-00001-of-00003.safetensors",
|
323 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
324 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
325 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
326 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
327 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
328 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
329 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
330 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
331 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
332 |
+
"model.layers.7.self_attn.adaptive_mu_k": "model-00001-of-00003.safetensors",
|
333 |
+
"model.layers.7.self_attn.adaptive_phi": "model-00001-of-00003.safetensors",
|
334 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
335 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
336 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
337 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
338 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
339 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
340 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
341 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
342 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
343 |
+
"model.layers.8.self_attn.adaptive_mu_k": "model-00001-of-00003.safetensors",
|
344 |
+
"model.layers.8.self_attn.adaptive_phi": "model-00001-of-00003.safetensors",
|
345 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
346 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
347 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
348 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
349 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
350 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
351 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
352 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
353 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
354 |
+
"model.layers.9.self_attn.adaptive_mu_k": "model-00001-of-00003.safetensors",
|
355 |
+
"model.layers.9.self_attn.adaptive_phi": "model-00001-of-00003.safetensors",
|
356 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
357 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
358 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
359 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
360 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
361 |
+
}
|
362 |
+
}
|
modeling_evabyte.py
ADDED
@@ -0,0 +1,1092 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.utils.checkpoint
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import CrossEntropyLoss
|
8 |
+
from transformers.activations import ACT2FN
|
9 |
+
from transformers.cache_utils import Cache
|
10 |
+
from transformers.modeling_outputs import (
|
11 |
+
BaseModelOutputWithPast,
|
12 |
+
CausalLMOutputWithPast,
|
13 |
+
)
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
|
16 |
+
from .configuration_evabyte import EvaByteConfig
|
17 |
+
from .multibyte_decoding_evabyte import MultiByteDecodingMixin
|
18 |
+
try:
|
19 |
+
import triton
|
20 |
+
USE_TRITON_IMPL = True
|
21 |
+
from .eva import EvaAttention
|
22 |
+
from .eva_agg_kernel import triton_eva_agg_fwd
|
23 |
+
from .eva_prep_kv_kernel import triton_eva_prep_kv_fwd
|
24 |
+
except ImportError:
|
25 |
+
USE_TRITON_IMPL = False
|
26 |
+
print("WARNING: triton is not installed, using fallback EVA which might be slow and throw errors")
|
27 |
+
from .eva_pt_ref import EvaAttention
|
28 |
+
from .eva_cache import EvaCache, EvaStaticCacheForTriton
|
29 |
+
|
30 |
+
MASK_MIN_VALUE = -10e10
|
31 |
+
|
32 |
+
def prepare_eva_attention_mask(
|
33 |
+
seq_len,
|
34 |
+
device,
|
35 |
+
chunk_size,
|
36 |
+
window_size,
|
37 |
+
use_cache=False,
|
38 |
+
cache=None
|
39 |
+
):
|
40 |
+
"""
|
41 |
+
Prepare attention masks for EVA.
|
42 |
+
|
43 |
+
"""
|
44 |
+
chunk_causal_mask = None
|
45 |
+
window_causal_mask = None
|
46 |
+
if use_cache:
|
47 |
+
cached_seq_len = cache.get_seq_length()
|
48 |
+
total_seq_len = seq_len + cached_seq_len
|
49 |
+
# cached_seq_len will be 0 during prefilling
|
50 |
+
# padded_seq_len = chunk_size * math.ceil(total_seq_len / chunk_size)
|
51 |
+
padded_seq_len = window_size * math.ceil(total_seq_len / window_size)
|
52 |
+
num_chunks = padded_seq_len // chunk_size
|
53 |
+
else:
|
54 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
55 |
+
assert seq_len % chunk_size == 0
|
56 |
+
num_chunks = seq_len // chunk_size
|
57 |
+
|
58 |
+
assert seq_len % window_size == 0
|
59 |
+
|
60 |
+
# create causal mask
|
61 |
+
################################
|
62 |
+
# generate chunked causal masks
|
63 |
+
################################
|
64 |
+
# [b, h, j, c, c]
|
65 |
+
chunks_per_window = window_size // chunk_size
|
66 |
+
if num_chunks >= chunks_per_window:
|
67 |
+
chunk_causal_mask = torch.ones(
|
68 |
+
(chunk_size, num_chunks, num_chunks),
|
69 |
+
device=device,
|
70 |
+
dtype=torch.bool
|
71 |
+
).triu(0)
|
72 |
+
|
73 |
+
num_blocks = num_chunks // chunks_per_window
|
74 |
+
chunk_causal_mask = chunk_causal_mask.reshape(
|
75 |
+
chunk_size,
|
76 |
+
num_blocks,
|
77 |
+
chunks_per_window,
|
78 |
+
num_blocks,
|
79 |
+
chunks_per_window
|
80 |
+
).transpose(-2, -3)
|
81 |
+
|
82 |
+
block_diag_zero = (
|
83 |
+
torch.eye(num_blocks, device=device, dtype=torch.bool)
|
84 |
+
.unsqueeze(-1)
|
85 |
+
.unsqueeze(-1)
|
86 |
+
.unsqueeze(0)
|
87 |
+
)
|
88 |
+
|
89 |
+
# Set diagonal blocks to zero
|
90 |
+
chunk_causal_mask = chunk_causal_mask.masked_fill(block_diag_zero, True)
|
91 |
+
|
92 |
+
# Reshape back to original size
|
93 |
+
chunk_causal_mask = (
|
94 |
+
chunk_causal_mask
|
95 |
+
.transpose(-2, -3)
|
96 |
+
.reshape(chunk_size, num_chunks, num_chunks)
|
97 |
+
.transpose(-2, -3)
|
98 |
+
.reshape(chunk_size * num_chunks, num_chunks)
|
99 |
+
.unsqueeze(0)
|
100 |
+
.unsqueeze(0)
|
101 |
+
)
|
102 |
+
else:
|
103 |
+
chunk_causal_mask = torch.ones(
|
104 |
+
(1, 1, chunk_size, num_chunks, num_chunks),
|
105 |
+
device=device,
|
106 |
+
dtype=torch.bool,
|
107 |
+
).triu(0).transpose(-2, -3) # [1, 1, c, j, c]
|
108 |
+
chunk_causal_mask = chunk_causal_mask.reshape(
|
109 |
+
1, 1, chunk_size * num_chunks, num_chunks
|
110 |
+
) # [1, 1, n, c]
|
111 |
+
|
112 |
+
if use_cache:
|
113 |
+
chunk_causal_mask = chunk_causal_mask[..., cached_seq_len : cached_seq_len + seq_len, :]
|
114 |
+
|
115 |
+
window_causal_mask = torch.ones(
|
116 |
+
(1, 1, 1, window_size, window_size),
|
117 |
+
device=device
|
118 |
+
).triu(1).to(torch.bool)
|
119 |
+
return (chunk_causal_mask, window_causal_mask)
|
120 |
+
|
121 |
+
def pad_to_multiple(tensor, multiple, dim=-2, value=0, create_mask=False, left_padding=False):
|
122 |
+
assert dim < 0 # only accept ``dim'' index in a reverse manner
|
123 |
+
seqlen = int(tensor.shape[dim])
|
124 |
+
m = seqlen / multiple
|
125 |
+
if m.is_integer():
|
126 |
+
if create_mask:
|
127 |
+
return tensor, torch.ones(size=(tensor.shape[0], tensor.shape[dim]), dtype=torch.bool, device=tensor.device)
|
128 |
+
else:
|
129 |
+
return tensor
|
130 |
+
remainder = math.ceil(m) * multiple - seqlen
|
131 |
+
pad_offset = (0,) * (-1 - dim) * 2
|
132 |
+
if left_padding:
|
133 |
+
padded_res = F.pad(tensor, (*pad_offset, remainder, 0), value=value)
|
134 |
+
else:
|
135 |
+
padded_res = F.pad(tensor, (*pad_offset, 0, remainder), value=value)
|
136 |
+
if create_mask:
|
137 |
+
# assume dim 0 is the batch size
|
138 |
+
padding_mask = torch.ones(size=(padded_res.shape[0], padded_res.shape[dim]), dtype=torch.bool, device=padded_res.device)
|
139 |
+
if left_padding:
|
140 |
+
padding_mask[:, :remainder] = False
|
141 |
+
else:
|
142 |
+
padding_mask[:, -remainder:] = False
|
143 |
+
return padded_res, padding_mask
|
144 |
+
else:
|
145 |
+
return padded_res
|
146 |
+
|
147 |
+
class EvaByteRMSNorm(nn.Module):
|
148 |
+
def __init__(self, config):
|
149 |
+
super().__init__()
|
150 |
+
self.config = config
|
151 |
+
self.fp32_ln = config.fp32_ln
|
152 |
+
self.variance_epsilon = config.rms_norm_eps
|
153 |
+
self.add_unit_offset = config.norm_add_unit_offset
|
154 |
+
if self.add_unit_offset:
|
155 |
+
self.weight = nn.Parameter(torch.zeros(config.hidden_size))
|
156 |
+
else:
|
157 |
+
self.weight = nn.Parameter(torch.ones(config.hidden_size))
|
158 |
+
|
159 |
+
def forward(self, hidden_states):
|
160 |
+
if hasattr(self, 'config'):
|
161 |
+
fp32_ln = self.config.fp32_ln
|
162 |
+
else:
|
163 |
+
fp32_ln = self.fp32_ln
|
164 |
+
hidden_states = hidden_states.to(torch.float32 if fp32_ln else torch.bfloat16)
|
165 |
+
|
166 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
167 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
168 |
+
if self.add_unit_offset:
|
169 |
+
return (1 + self.weight) * hidden_states
|
170 |
+
else:
|
171 |
+
return self.weight * hidden_states
|
172 |
+
|
173 |
+
class EvaByteRotaryEmbedding(torch.nn.Module):
|
174 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
175 |
+
super().__init__()
|
176 |
+
|
177 |
+
self.dim = dim
|
178 |
+
self.max_position_embeddings = max_position_embeddings
|
179 |
+
self.base = base
|
180 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
181 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
182 |
+
|
183 |
+
self._set_cos_sin_cache(seq_len=max_position_embeddings,
|
184 |
+
device=self.inv_freq.device,
|
185 |
+
dtype=torch.get_default_dtype())
|
186 |
+
|
187 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
188 |
+
self.max_seq_len_cached = seq_len
|
189 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
190 |
+
|
191 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
192 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
193 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
194 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
195 |
+
|
196 |
+
|
197 |
+
def forward(self, x, seq_len=None):
|
198 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
199 |
+
if seq_len > self.max_seq_len_cached:
|
200 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
201 |
+
|
202 |
+
# return (
|
203 |
+
# self.cos_cached[:seq_len].to(dtype=x.dtype),
|
204 |
+
# self.sin_cached[:seq_len].to(dtype=x.dtype),
|
205 |
+
# )
|
206 |
+
if seq_len < self.max_seq_len_cached:
|
207 |
+
cos_slice = self.cos_cached.split(seq_len, dim=0)[0]
|
208 |
+
sin_slice = self.sin_cached.split(seq_len, dim=0)[0]
|
209 |
+
else:
|
210 |
+
cos_slice = self.cos_cached
|
211 |
+
sin_slice = self.sin_cached
|
212 |
+
|
213 |
+
return (
|
214 |
+
cos_slice.to(dtype=x.dtype),
|
215 |
+
sin_slice.to(dtype=x.dtype),
|
216 |
+
)
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
class EvaByteLinearScalingRotaryEmbedding(EvaByteRotaryEmbedding):
|
221 |
+
"""EvaByteRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
222 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
223 |
+
self.scaling_factor = scaling_factor
|
224 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
225 |
+
|
226 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
227 |
+
self.max_seq_len_cached = seq_len
|
228 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
229 |
+
t = t / self.scaling_factor
|
230 |
+
|
231 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
232 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
233 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
234 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
235 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
236 |
+
|
237 |
+
|
238 |
+
class EvaByteDynamicNTKScalingRotaryEmbedding(EvaByteRotaryEmbedding):
|
239 |
+
"""EvaByteRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
240 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
241 |
+
self.scaling_factor = scaling_factor
|
242 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
243 |
+
|
244 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
245 |
+
self.max_seq_len_cached = seq_len
|
246 |
+
|
247 |
+
if seq_len > self.max_position_embeddings:
|
248 |
+
base = self.base * ((self.scaling_factor * seq_len / self.max_position_embeddings) -
|
249 |
+
(self.scaling_factor - 1))**(self.dim / (self.dim - 2))
|
250 |
+
inv_freq = 1.0 / (base**(torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
251 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
252 |
+
|
253 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
254 |
+
|
255 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
256 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
257 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
258 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
259 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
260 |
+
|
261 |
+
|
262 |
+
class EvaByteMLP(nn.Module):
|
263 |
+
def __init__(self, config, layer_idx: int = None):
|
264 |
+
super().__init__()
|
265 |
+
self.hidden_size = config.hidden_size
|
266 |
+
self.intermediate_size = config.intermediate_size
|
267 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
268 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
269 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
270 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
271 |
+
self.layer_idx = layer_idx
|
272 |
+
self.config = config
|
273 |
+
|
274 |
+
def forward(self, x):
|
275 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
276 |
+
return down_proj
|
277 |
+
|
278 |
+
class EvaByteDecoderLayer(nn.Module):
|
279 |
+
def __init__(self, config: EvaByteConfig, layer_idx: int = None):
|
280 |
+
super().__init__()
|
281 |
+
self.config = config
|
282 |
+
self.hidden_size = config.hidden_size
|
283 |
+
self.self_attn = EvaAttention(config=config, layer_idx=layer_idx)
|
284 |
+
self.mlp = EvaByteMLP(config, layer_idx=layer_idx)
|
285 |
+
self.input_layernorm = EvaByteRMSNorm(config)
|
286 |
+
self.post_attention_layernorm = EvaByteRMSNorm(config)
|
287 |
+
|
288 |
+
def forward(
|
289 |
+
self,
|
290 |
+
hidden_states: torch.Tensor,
|
291 |
+
attention_mask: Optional[torch.Tensor] = None,
|
292 |
+
position_ids: Optional[torch.LongTensor] = None,
|
293 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
294 |
+
output_attentions: Optional[bool] = False,
|
295 |
+
use_cache: Optional[bool] = False,
|
296 |
+
cos: Optional[torch.Tensor] = None,
|
297 |
+
sin: Optional[torch.Tensor] = None,
|
298 |
+
multibyte_decoding: Optional[bool] = False,
|
299 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
300 |
+
residual = hidden_states
|
301 |
+
if self.config.fp32_skip_add:
|
302 |
+
residual = residual.float()
|
303 |
+
|
304 |
+
hidden_states = self.input_layernorm(hidden_states)
|
305 |
+
|
306 |
+
# Self Attention
|
307 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(hidden_states=hidden_states,
|
308 |
+
attention_mask=attention_mask,
|
309 |
+
position_ids=position_ids,
|
310 |
+
past_key_value=past_key_value,
|
311 |
+
output_attentions=output_attentions,
|
312 |
+
use_cache=use_cache,
|
313 |
+
cos=cos,
|
314 |
+
sin=sin,
|
315 |
+
multibyte_decoding=multibyte_decoding)
|
316 |
+
hidden_states = residual + hidden_states
|
317 |
+
|
318 |
+
# Fully Connected
|
319 |
+
residual = hidden_states
|
320 |
+
if self.config.fp32_skip_add:
|
321 |
+
residual = residual.float()
|
322 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
323 |
+
hidden_states = self.mlp(hidden_states)
|
324 |
+
hidden_states = residual + hidden_states
|
325 |
+
|
326 |
+
outputs = (hidden_states, )
|
327 |
+
|
328 |
+
if output_attentions:
|
329 |
+
outputs += (self_attn_weights, )
|
330 |
+
|
331 |
+
if use_cache:
|
332 |
+
outputs += (present_key_value, )
|
333 |
+
return outputs
|
334 |
+
|
335 |
+
class EvaBytePreTrainedModel(PreTrainedModel):
|
336 |
+
config_class = EvaByteConfig
|
337 |
+
base_model_prefix = "model"
|
338 |
+
supports_gradient_checkpointing = True
|
339 |
+
_no_split_modules = ["EvaByteDecoderLayer"]
|
340 |
+
_skip_keys_device_placement = "past_key_values"
|
341 |
+
|
342 |
+
def _init_weights(self, module):
|
343 |
+
std = getattr(self.config, "initializer_range", 0.02)
|
344 |
+
if isinstance(module, nn.Linear):
|
345 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
346 |
+
if module.bias is not None:
|
347 |
+
module.bias.data.zero_()
|
348 |
+
elif isinstance(module, nn.Embedding):
|
349 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
350 |
+
if module.padding_idx is not None:
|
351 |
+
module.weight.data[module.padding_idx].zero_()
|
352 |
+
|
353 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
354 |
+
if isinstance(module, EvaByteModel):
|
355 |
+
module.gradient_checkpointing = value
|
356 |
+
|
357 |
+
class EvaByteModel(EvaBytePreTrainedModel):
|
358 |
+
"""
|
359 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`EvaByteDecoderLayer`]
|
360 |
+
|
361 |
+
Args:
|
362 |
+
config: EvaByteConfig
|
363 |
+
"""
|
364 |
+
def __init__(self, config: EvaByteConfig):
|
365 |
+
super().__init__(config)
|
366 |
+
self.padding_idx = config.pad_token_id
|
367 |
+
self.vocab_size = config.vocab_size
|
368 |
+
self.hidden_size = config.hidden_size
|
369 |
+
self.num_heads = config.num_attention_heads
|
370 |
+
self.head_dim = self.hidden_size // self.num_heads
|
371 |
+
self.max_position_embeddings = self.config.max_position_embeddings
|
372 |
+
|
373 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
374 |
+
self.layers = nn.ModuleList([EvaByteDecoderLayer(config, layer_idx=layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
375 |
+
self.norm = EvaByteRMSNorm(config)
|
376 |
+
|
377 |
+
self.gradient_checkpointing = False
|
378 |
+
self.rope = config.rope_theta
|
379 |
+
# Initialize weights and apply final processing
|
380 |
+
self.post_init()
|
381 |
+
self._init_rope()
|
382 |
+
|
383 |
+
def _init_rope(self):
|
384 |
+
if self.config.rope_scaling is None:
|
385 |
+
self.rotary_emb = EvaByteRotaryEmbedding(self.head_dim,
|
386 |
+
max_position_embeddings=self.max_position_embeddings,
|
387 |
+
base=self.rope)
|
388 |
+
else:
|
389 |
+
scaling_type = self.config.rope_scaling["type"]
|
390 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
391 |
+
if scaling_type == "linear":
|
392 |
+
self.rotary_emb = EvaByteLinearScalingRotaryEmbedding(
|
393 |
+
self.head_dim,
|
394 |
+
max_position_embeddings=self.max_position_embeddings,
|
395 |
+
scaling_factor=scaling_factor,
|
396 |
+
base=self.rope)
|
397 |
+
elif scaling_type == "dynamic":
|
398 |
+
self.rotary_emb = EvaByteDynamicNTKScalingRotaryEmbedding(
|
399 |
+
self.head_dim,
|
400 |
+
max_position_embeddings=self.max_position_embeddings,
|
401 |
+
scaling_factor=scaling_factor,
|
402 |
+
base=self.rope)
|
403 |
+
else:
|
404 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
405 |
+
|
406 |
+
def get_input_embeddings(self):
|
407 |
+
return self.embed_tokens
|
408 |
+
|
409 |
+
def set_input_embeddings(self, value):
|
410 |
+
self.embed_tokens = value
|
411 |
+
|
412 |
+
def _helper_padding_mask(
|
413 |
+
self,
|
414 |
+
padding_mask,
|
415 |
+
causal_mask
|
416 |
+
):
|
417 |
+
padding_mask = torch.logical_or(padding_mask, padding_mask.transpose(-1, -2))
|
418 |
+
return torch.logical_or(padding_mask, causal_mask)
|
419 |
+
|
420 |
+
def _prepare_eva_generation_attn_mask_triton(
|
421 |
+
self,
|
422 |
+
attention_mask,
|
423 |
+
input_ids,
|
424 |
+
use_cache,
|
425 |
+
past_key_values
|
426 |
+
):
|
427 |
+
batch_size, seq_len = input_ids.shape
|
428 |
+
if use_cache and past_key_values.get_seq_length() > 0:
|
429 |
+
# decoding phase
|
430 |
+
if past_key_values.rf_mask[0] is not None:
|
431 |
+
cur_rf_mask = torch.zeros(
|
432 |
+
(batch_size, 1, seq_len, 1),
|
433 |
+
dtype=past_key_values.rf_mask[0].dtype,
|
434 |
+
device=past_key_values.rf_mask[0].device
|
435 |
+
)
|
436 |
+
else:
|
437 |
+
cur_rf_mask = None
|
438 |
+
|
439 |
+
if past_key_values.s_mask[0] is not None:
|
440 |
+
cur_s_mask = torch.zeros(
|
441 |
+
(batch_size, 1, seq_len, 1),
|
442 |
+
dtype=past_key_values.s_mask[0].dtype,
|
443 |
+
device=past_key_values.s_mask[0].device
|
444 |
+
)
|
445 |
+
else:
|
446 |
+
cur_s_mask = None
|
447 |
+
|
448 |
+
seen_tokens = past_key_values.get_seq_length()
|
449 |
+
if seen_tokens <= self.config.window_size:
|
450 |
+
rfa_chunks_dummy_mask = None
|
451 |
+
else:
|
452 |
+
if cur_s_mask is not None:
|
453 |
+
chunks_per_window = int(self.config.window_size // self.config.chunk_size)
|
454 |
+
# the ongoing decoding step would be (seen_seq_len + 1)-th token
|
455 |
+
num_windows_seen_so_far = seen_tokens // self.config.window_size
|
456 |
+
rfa_chunks_dummy_mask = torch.zeros(
|
457 |
+
(batch_size, 1, seq_len, num_windows_seen_so_far * chunks_per_window),
|
458 |
+
dtype=past_key_values.s_mask[0].dtype,
|
459 |
+
device=past_key_values.s_mask[0].device
|
460 |
+
)
|
461 |
+
else:
|
462 |
+
rfa_chunks_dummy_mask = None
|
463 |
+
# rf_mask and cur_mask are 0s because we do not want to mask them
|
464 |
+
return (cur_s_mask, cur_rf_mask, rfa_chunks_dummy_mask)
|
465 |
+
|
466 |
+
if attention_mask is not None and torch.any(attention_mask == 0.0):
|
467 |
+
# convert 0 -> padding to 1 -> padding
|
468 |
+
padded_attention_mask = pad_to_multiple(
|
469 |
+
attention_mask,
|
470 |
+
self.config.window_size,
|
471 |
+
dim=-1,
|
472 |
+
value=0,
|
473 |
+
create_mask=False,
|
474 |
+
left_padding=False
|
475 |
+
)
|
476 |
+
# convert 0 -> padding to 1 -> padding
|
477 |
+
padded_rf_mask = ~padded_attention_mask.unsqueeze(1).unsqueeze(-1).to(torch.bool) # [b, 1, n, 1]
|
478 |
+
# [b, 1, w, j, 1]
|
479 |
+
padded_w_attn_mask = padded_rf_mask.reshape(batch_size, 1, -1, self.config.window_size, 1).to(torch.bool)
|
480 |
+
# [b, 1, w, j, 1] [b, 1, w, 1, j] -> [b, 1, w, j, j]
|
481 |
+
w_padding_mask = torch.logical_or(padded_w_attn_mask, padded_w_attn_mask.transpose(-1, -2))
|
482 |
+
w_causal_mask = torch.ones(
|
483 |
+
(1, 1, 1, self.config.window_size, self.config.window_size),
|
484 |
+
device=input_ids.device
|
485 |
+
).triu(1).to(torch.bool)
|
486 |
+
s_mask = torch.logical_or(w_padding_mask, w_causal_mask)
|
487 |
+
s_mask = s_mask.reshape(batch_size, 1, -1, self.config.window_size)
|
488 |
+
s_mask = s_mask[..., :seq_len, :]
|
489 |
+
# negate the attention mask to get the padding mask
|
490 |
+
rf_mask = ~attention_mask.unsqueeze(1).unsqueeze(-1).to(torch.bool) # [b, 1, n, 1]
|
491 |
+
return (s_mask, rf_mask)
|
492 |
+
else:
|
493 |
+
return (None, None)
|
494 |
+
|
495 |
+
def _prepare_eva_generation_attn_mask(
|
496 |
+
self,
|
497 |
+
attention_mask,
|
498 |
+
input_ids,
|
499 |
+
use_cache,
|
500 |
+
past_key_values
|
501 |
+
):
|
502 |
+
batch_size, seq_len = input_ids.shape
|
503 |
+
if use_cache and past_key_values.get_seq_length() > 0:
|
504 |
+
# decoding phase
|
505 |
+
if past_key_values.rf_mask[0] is not None:
|
506 |
+
rf_mask = torch.zeros(
|
507 |
+
(batch_size, 1, seq_len, 1),
|
508 |
+
dtype=past_key_values.rf_mask[0].dtype,
|
509 |
+
device=past_key_values.rf_mask[0].device
|
510 |
+
)
|
511 |
+
else:
|
512 |
+
rf_mask = None
|
513 |
+
|
514 |
+
cur_causal_mask = torch.zeros(
|
515 |
+
(batch_size, 1, seq_len, 1),
|
516 |
+
dtype=torch.bool,
|
517 |
+
device=input_ids.device
|
518 |
+
)
|
519 |
+
|
520 |
+
chunk_causal_mask = torch.ones(
|
521 |
+
(batch_size, 1, seq_len, 1),
|
522 |
+
dtype=torch.bool,
|
523 |
+
device=input_ids.device
|
524 |
+
)
|
525 |
+
# chunk_causal_mask are 1s because we will mask them by default and
|
526 |
+
# will be unmasked when the current singleton attention is processed over
|
527 |
+
return (None, cur_causal_mask, chunk_causal_mask, rf_mask)
|
528 |
+
|
529 |
+
true_num_chunks = seq_len // self.config.chunk_size
|
530 |
+
chunk_causal_mask, _ = prepare_eva_attention_mask(
|
531 |
+
seq_len,
|
532 |
+
input_ids.device,
|
533 |
+
self.config.chunk_size,
|
534 |
+
self.config.window_size,
|
535 |
+
use_cache=use_cache,
|
536 |
+
cache=past_key_values
|
537 |
+
)
|
538 |
+
chunk_causal_mask = chunk_causal_mask[..., :seq_len, :true_num_chunks]
|
539 |
+
if attention_mask is not None and torch.any(attention_mask == 0.0):
|
540 |
+
# convert 0 -> padding to 1 -> padding
|
541 |
+
rf_mask = ~attention_mask.unsqueeze(1).unsqueeze(-1).to(torch.bool) # [b, 1, n, 1]
|
542 |
+
else:
|
543 |
+
rf_mask = None
|
544 |
+
|
545 |
+
if seq_len < self.config.window_size:
|
546 |
+
cur_window_mask = torch.ones(
|
547 |
+
(1, 1, seq_len, seq_len),
|
548 |
+
device=input_ids.device
|
549 |
+
).triu(1).to(torch.bool)
|
550 |
+
if rf_mask is not None:
|
551 |
+
cur_window_mask = self._helper_padding_mask(rf_mask, cur_window_mask)
|
552 |
+
prev_window_mask = None
|
553 |
+
else:
|
554 |
+
if seq_len % self.config.window_size == 0:
|
555 |
+
num_windows = seq_len // self.config.window_size
|
556 |
+
cur_window_mask = None
|
557 |
+
prev_window_mask = torch.ones(
|
558 |
+
(1, 1, num_windows, self.config.window_size, self.config.window_size),
|
559 |
+
device=input_ids.device
|
560 |
+
).triu(1).to(torch.bool)
|
561 |
+
if rf_mask is not None:
|
562 |
+
prev_rf_mask = rf_mask.reshape(batch_size, 1, -1, self.config.window_size, 1)
|
563 |
+
prev_window_mask = self._helper_padding_mask(prev_rf_mask, prev_window_mask)
|
564 |
+
else:
|
565 |
+
num_windows = seq_len // self.config.window_size
|
566 |
+
remainder_tokens = seq_len % self.config.window_size
|
567 |
+
cur_window_mask = torch.ones(
|
568 |
+
(1, 1, remainder_tokens, remainder_tokens),
|
569 |
+
device=input_ids.device
|
570 |
+
).triu(1).to(torch.bool)
|
571 |
+
prev_window_mask = torch.ones(
|
572 |
+
(1, 1, num_windows, self.config.window_size, self.config.window_size),
|
573 |
+
device=input_ids.device
|
574 |
+
).triu(1).to(torch.bool)
|
575 |
+
if rf_mask is not None:
|
576 |
+
prev_rf_mask, cur_rf_mask = torch.split(rf_mask, [seq_len - remainder_tokens, remainder_tokens], dim=-2)
|
577 |
+
cur_window_mask = self._helper_padding_mask(cur_rf_mask, cur_window_mask)
|
578 |
+
prev_rf_mask = prev_rf_mask.reshape(batch_size, 1, -1, self.config.window_size, 1)
|
579 |
+
prev_window_mask = self._helper_padding_mask(prev_rf_mask, prev_window_mask)
|
580 |
+
|
581 |
+
return (prev_window_mask, cur_window_mask, chunk_causal_mask, rf_mask)
|
582 |
+
|
583 |
+
def forward(
|
584 |
+
self,
|
585 |
+
input_ids: torch.LongTensor = None,
|
586 |
+
attention_mask: Optional[torch.Tensor] = None,
|
587 |
+
position_ids: Optional[torch.LongTensor] = None,
|
588 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
589 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
590 |
+
use_cache: Optional[bool] = None,
|
591 |
+
output_attentions: Optional[bool] = None,
|
592 |
+
output_hidden_states: Optional[bool] = None,
|
593 |
+
return_dict: Optional[bool] = None,
|
594 |
+
multibyte_decoding: Optional[bool] = None,
|
595 |
+
) -> Tuple:
|
596 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
597 |
+
output_hidden_states = (output_hidden_states
|
598 |
+
if output_hidden_states is not None else self.config.output_hidden_states)
|
599 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
600 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
601 |
+
|
602 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
603 |
+
raise ValueError(
|
604 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
605 |
+
)
|
606 |
+
|
607 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
608 |
+
raise ValueError("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
609 |
+
|
610 |
+
batch_size, seq_len = input_ids.shape
|
611 |
+
#### Step 0. Hack
|
612 |
+
if (not self.training) and (not use_cache) and (not multibyte_decoding):
|
613 |
+
# forward-only inference mode.
|
614 |
+
# We tweak use_cache to be True to reuse code for generation
|
615 |
+
use_cache = True
|
616 |
+
device = input_ids.device if input_ids is not None else None
|
617 |
+
if position_ids is None:
|
618 |
+
position_ids = torch.arange(0, seq_len, device=device, dtype=int).reshape(1, -1).expand(batch_size, -1)
|
619 |
+
|
620 |
+
#### Step 1. Prepare caches if in inference mode
|
621 |
+
if use_cache:
|
622 |
+
if past_key_values is not None:
|
623 |
+
assert isinstance(past_key_values, Cache)
|
624 |
+
else:
|
625 |
+
if not USE_TRITON_IMPL:
|
626 |
+
past_key_values = EvaCache()
|
627 |
+
else:
|
628 |
+
past_key_values = EvaStaticCacheForTriton(
|
629 |
+
input_ids.shape[0],
|
630 |
+
self.config.num_attention_heads,
|
631 |
+
self.config.window_size,
|
632 |
+
self.config.hidden_size // self.config.num_attention_heads,
|
633 |
+
self.config.num_hidden_layers,
|
634 |
+
self.embed_tokens.weight.dtype,
|
635 |
+
self.embed_tokens.weight.device,
|
636 |
+
)
|
637 |
+
|
638 |
+
if not multibyte_decoding:
|
639 |
+
if use_cache:
|
640 |
+
if USE_TRITON_IMPL:
|
641 |
+
causal_mask = self._prepare_eva_generation_attn_mask_triton(
|
642 |
+
attention_mask,
|
643 |
+
input_ids,
|
644 |
+
use_cache,
|
645 |
+
past_key_values
|
646 |
+
)
|
647 |
+
else:
|
648 |
+
causal_mask = self._prepare_eva_generation_attn_mask(
|
649 |
+
attention_mask,
|
650 |
+
input_ids,
|
651 |
+
use_cache,
|
652 |
+
past_key_values
|
653 |
+
)
|
654 |
+
else:
|
655 |
+
assert self.training
|
656 |
+
assert seq_len % self.config.window_size == 0
|
657 |
+
# for training, we need to pass in the attention mask
|
658 |
+
# usually calculated by _prepare_training_attn_mask()
|
659 |
+
causal_mask = attention_mask
|
660 |
+
else:
|
661 |
+
assert use_cache
|
662 |
+
causal_mask = attention_mask
|
663 |
+
|
664 |
+
if inputs_embeds is None:
|
665 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
666 |
+
|
667 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
668 |
+
max_seq_length = past_seen_tokens + inputs_embeds.shape[1]
|
669 |
+
|
670 |
+
hidden_states = inputs_embeds
|
671 |
+
|
672 |
+
if position_ids is None:
|
673 |
+
assert not use_cache, "during decoding we must explicitly pass position_ids to the model call"
|
674 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
675 |
+
position_ids = torch.arange(past_seen_tokens, max_seq_length, device=device, dtype=int).reshape(1, -1).expand(batch_size, -1)
|
676 |
+
|
677 |
+
cos, sin = self.rotary_emb(hidden_states, seq_len=max_seq_length)
|
678 |
+
assert len(cos.shape) == 2, f"cos should be of shape (max_seq_len, head_dim), got {cos.shape} instead"
|
679 |
+
assert sin.shape == cos.shape, f"sin should be of shape (max_seq_len, head_dim), got {sin.shape} instead"
|
680 |
+
assert len(position_ids.shape) == 2, f"position_ids should be of 2D, got {position_ids.shape} instead"
|
681 |
+
cos = cos[position_ids, :]
|
682 |
+
sin = sin[position_ids, :]
|
683 |
+
cos = cos.unsqueeze(1)
|
684 |
+
sin = sin.unsqueeze(1)
|
685 |
+
|
686 |
+
if USE_TRITON_IMPL and (not multibyte_decoding):
|
687 |
+
# the masks generated above for triton kernels are boolean. Convert them to floats
|
688 |
+
if (
|
689 |
+
(not use_cache) or
|
690 |
+
(use_cache and past_seen_tokens == 0)
|
691 |
+
):
|
692 |
+
window_mask, intra_chunk_mask = causal_mask
|
693 |
+
|
694 |
+
if window_mask is not None:
|
695 |
+
assert window_mask.dtype == torch.bool
|
696 |
+
window_mask_float = window_mask.to(torch.float)
|
697 |
+
window_mask_float = window_mask_float.masked_fill(window_mask.to(torch.bool), MASK_MIN_VALUE)
|
698 |
+
window_mask_float = window_mask_float.reshape(batch_size, 1, -1, self.config.window_size)
|
699 |
+
window_mask = window_mask_float.to(hidden_states.dtype)
|
700 |
+
|
701 |
+
if intra_chunk_mask is not None:
|
702 |
+
assert intra_chunk_mask.dtype == torch.bool
|
703 |
+
intra_chunk_mask_float = intra_chunk_mask.to(torch.float)
|
704 |
+
intra_chunk_mask_float = intra_chunk_mask_float.masked_fill(intra_chunk_mask.to(torch.bool), MASK_MIN_VALUE)
|
705 |
+
intra_chunk_mask = intra_chunk_mask_float.to(hidden_states.dtype)
|
706 |
+
causal_mask = (window_mask, intra_chunk_mask)
|
707 |
+
|
708 |
+
if self.config.fp32_skip_add:
|
709 |
+
hidden_states = hidden_states.float()
|
710 |
+
|
711 |
+
# decoder layers
|
712 |
+
all_hidden_states = () if output_hidden_states else None
|
713 |
+
all_self_attns = () if output_attentions else None
|
714 |
+
next_decoder_cache = None
|
715 |
+
|
716 |
+
for decoder_layer in self.layers:
|
717 |
+
if output_hidden_states:
|
718 |
+
all_hidden_states += (hidden_states, )
|
719 |
+
|
720 |
+
if self.gradient_checkpointing and self.training:
|
721 |
+
|
722 |
+
def create_custom_forward(module):
|
723 |
+
def custom_forward(*inputs):
|
724 |
+
# None for past_key_value
|
725 |
+
return module(*inputs, output_attentions, use_cache=None)
|
726 |
+
|
727 |
+
return custom_forward
|
728 |
+
|
729 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
730 |
+
create_custom_forward(decoder_layer),
|
731 |
+
hidden_states,
|
732 |
+
causal_mask,
|
733 |
+
position_ids,
|
734 |
+
None,
|
735 |
+
)
|
736 |
+
else:
|
737 |
+
layer_outputs = decoder_layer(
|
738 |
+
hidden_states,
|
739 |
+
attention_mask=causal_mask,
|
740 |
+
position_ids=position_ids,
|
741 |
+
past_key_value=past_key_values,
|
742 |
+
output_attentions=output_attentions,
|
743 |
+
use_cache=use_cache,
|
744 |
+
cos=cos,
|
745 |
+
sin=sin,
|
746 |
+
multibyte_decoding=multibyte_decoding,
|
747 |
+
)
|
748 |
+
|
749 |
+
hidden_states = layer_outputs[0]
|
750 |
+
|
751 |
+
if use_cache:
|
752 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
753 |
+
|
754 |
+
if output_attentions:
|
755 |
+
all_self_attns += (layer_outputs[1], )
|
756 |
+
|
757 |
+
hidden_states = self.norm(hidden_states)
|
758 |
+
|
759 |
+
# add hidden states from the last decoder layer
|
760 |
+
if output_hidden_states:
|
761 |
+
all_hidden_states += (hidden_states, )
|
762 |
+
|
763 |
+
next_cache = next_decoder_cache if use_cache else None
|
764 |
+
if not return_dict:
|
765 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
766 |
+
|
767 |
+
return BaseModelOutputWithPast(
|
768 |
+
last_hidden_state=hidden_states,
|
769 |
+
past_key_values=next_cache,
|
770 |
+
hidden_states=all_hidden_states,
|
771 |
+
attentions=all_self_attns,
|
772 |
+
)
|
773 |
+
|
774 |
+
|
775 |
+
class EvaByteForCausalLM(EvaBytePreTrainedModel, MultiByteDecodingMixin):
|
776 |
+
_tied_weights_keys = ["lm_head.weight"]
|
777 |
+
|
778 |
+
def __init__(self, config):
|
779 |
+
EvaBytePreTrainedModel.__init__(self, config)
|
780 |
+
|
781 |
+
self.model = EvaByteModel(config)
|
782 |
+
self.vocab_size = config.vocab_size
|
783 |
+
# define multibyte prediction heads
|
784 |
+
if hasattr(config, "num_pred_heads") and config.num_pred_heads > 1:
|
785 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size * config.num_pred_heads, bias=False)
|
786 |
+
else:
|
787 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
788 |
+
|
789 |
+
self.post_init()
|
790 |
+
|
791 |
+
def get_input_embeddings(self):
|
792 |
+
return self.model.embed_tokens
|
793 |
+
|
794 |
+
def set_input_embeddings(self, value):
|
795 |
+
self.model.embed_tokens = value
|
796 |
+
|
797 |
+
def get_output_embeddings(self):
|
798 |
+
return self.lm_head
|
799 |
+
|
800 |
+
def set_output_embeddings(self, new_embeddings):
|
801 |
+
self.lm_head = new_embeddings
|
802 |
+
|
803 |
+
def set_decoder(self, decoder):
|
804 |
+
self.model = decoder
|
805 |
+
|
806 |
+
def get_decoder(self):
|
807 |
+
return self.model
|
808 |
+
|
809 |
+
def _prepare_training_attn_mask(
|
810 |
+
self,
|
811 |
+
target_token_type_ids,
|
812 |
+
use_doc_boundary_attention,
|
813 |
+
EOS_TOKEN_TYPE_ID=None,
|
814 |
+
PAD_TOKEN_TYPE_ID=None,
|
815 |
+
):
|
816 |
+
'''
|
817 |
+
This function prepares the attention mask for training byte models.
|
818 |
+
target_token_type_ids:
|
819 |
+
Tensor of shape (batch_size, seq_len), marking the token type ids
|
820 |
+
for the target sequence. In particular, we should have
|
821 |
+
- target_token_type_ids[i, j] = EOS_TOKEN_TYPE_ID
|
822 |
+
if the j-th token in the i-th sequence is the end of an article.
|
823 |
+
- target_token_type_ids[i, j] = PAD_TOKEN_TYPE_ID
|
824 |
+
if the j-th token in the i-th sequence is the padding token.
|
825 |
+
use_doc_boundary_attention: bool,
|
826 |
+
whether to enable doc boundary attention.
|
827 |
+
EOS_TOKEN_TYPE_ID: int,
|
828 |
+
the token type id for the end of an article.
|
829 |
+
PAD_TOKEN_TYPE_ID: int,
|
830 |
+
the token type id for the padding token.
|
831 |
+
'''
|
832 |
+
assert self.training
|
833 |
+
batch_size, num_tokens = target_token_type_ids.shape
|
834 |
+
|
835 |
+
chunk_causal_mask, window_causal_mask = prepare_eva_attention_mask(
|
836 |
+
num_tokens,
|
837 |
+
target_token_type_ids.device,
|
838 |
+
chunk_size=self.config.chunk_size,
|
839 |
+
window_size=self.config.window_size,
|
840 |
+
use_cache=False,
|
841 |
+
cache=None
|
842 |
+
)
|
843 |
+
if use_doc_boundary_attention:
|
844 |
+
#### step 1: mark each document with a unique id
|
845 |
+
end_token_ids = {EOS_TOKEN_TYPE_ID, PAD_TOKEN_TYPE_ID}
|
846 |
+
token_types = torch.zeros(batch_size, num_tokens)
|
847 |
+
for sequence_idx, sequence in enumerate(target_token_type_ids):
|
848 |
+
num_articles = 0
|
849 |
+
start_index = 0
|
850 |
+
# for each sample in the batch, the collapsed attention mask looks like:
|
851 |
+
# [1, 1, .... 1, 0, 2, 2, ... 2, 0, ... n, n ..... n], assuming there are n articles in the sequence.
|
852 |
+
# Each of the n articles are separated by 0.
|
853 |
+
for token_idx, token_type_id in enumerate(sequence):
|
854 |
+
if start_index is not None and token_type_id.item() in end_token_ids:
|
855 |
+
num_articles += 1
|
856 |
+
end_index = token_idx if token_type_id == PAD_TOKEN_TYPE_ID else token_idx + 1
|
857 |
+
token_types[sequence_idx][start_index:end_index] = num_articles
|
858 |
+
start_index = None
|
859 |
+
elif start_index is None and token_type_id not in end_token_ids:
|
860 |
+
start_index = token_idx + 1
|
861 |
+
|
862 |
+
assert num_tokens % self.config.chunk_size == 0, "Number of tokens must be divisible by chunk size"
|
863 |
+
assert num_tokens % self.config.window_size == 0, "Number of tokens must be divisible by window size"
|
864 |
+
num_chunks = num_tokens // self.config.chunk_size
|
865 |
+
num_windows = num_tokens // self.config.window_size
|
866 |
+
|
867 |
+
article_separator = 0
|
868 |
+
|
869 |
+
#### step 2: generate attention masks for each window
|
870 |
+
#### NOTE: we perform exact attention within each window,
|
871 |
+
#### so we only need to mask out different documents
|
872 |
+
#### for each window.
|
873 |
+
token_types_windows = token_types.reshape(batch_size, num_windows, self.config.window_size, 1)
|
874 |
+
token_types_windows_t = token_types_windows.transpose(-1, -2)
|
875 |
+
# replace all elements in TOKEN_SEPS with -1
|
876 |
+
token_types_windows = torch.where(token_types_windows == article_separator, -1, token_types_windows)
|
877 |
+
window_3d_mask = (token_types_windows == token_types_windows_t)
|
878 |
+
window_3d_mask = ~window_3d_mask
|
879 |
+
|
880 |
+
#### step 3: generate chunk-level 3D masks
|
881 |
+
#### NOTE: this is a bit tricky, as we aim to mask out different
|
882 |
+
#### documents to avoid cross-doc attention across chunks.
|
883 |
+
#### Example: suppose we have a sequence of length 12 with 3 documents:
|
884 |
+
#### [1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3].
|
885 |
+
#### The chunk-size and window-size are both 4.
|
886 |
+
#### The chunk-level mask of shape (batch_size, seq_len, num_chunks) is:
|
887 |
+
#### [
|
888 |
+
#### [0, 0, 0],
|
889 |
+
#### [0, 0, 0],
|
890 |
+
#### [0, 0, 0],
|
891 |
+
#### [0, 0, 0],
|
892 |
+
####
|
893 |
+
#### [1, 0, 0],
|
894 |
+
#### [0, 0, 0],
|
895 |
+
#### [0, 0, 0],
|
896 |
+
#### [0, 0, 0],
|
897 |
+
####
|
898 |
+
#### [0, 1, 0],
|
899 |
+
#### [0, 1, 0],
|
900 |
+
#### [0, 1, 0],
|
901 |
+
#### [0, 1, 0],
|
902 |
+
#### ]
|
903 |
+
#### Explanation:
|
904 |
+
#### - Tokens will not attend to their own and future chunks.
|
905 |
+
#### (as tokens within a chunk are captured by the window-level exact attention)
|
906 |
+
#### - Tokens will attend to a chunk only if there are tokens
|
907 |
+
#### from the same document in that chunk.
|
908 |
+
#### The mask within each chunk of shape (batch_size, num_chunks, chunk_size) is:
|
909 |
+
#### [
|
910 |
+
#### [1, 1, 1, 1],
|
911 |
+
#### [0, 0, 0, 1],
|
912 |
+
#### [1, 1, 1, 1],
|
913 |
+
#### ]
|
914 |
+
#### Explanation:
|
915 |
+
#### - If all tokens in a chunk are from the same document,
|
916 |
+
#### no tokens will be masked out.
|
917 |
+
#### - If there are tokens from different documents in a chunk,
|
918 |
+
#### only tokens from the rightmost document will be kept.
|
919 |
+
#### (b/c the future chunks might contain tokens from the rightmost document,
|
920 |
+
#### but all the remaining docs will never get attended by other docs)
|
921 |
+
token_types_chunks = token_types.reshape(batch_size, num_chunks, self.config.chunk_size)
|
922 |
+
inter_chunk_mask = torch.zeros((batch_size, num_tokens, num_chunks), dtype=torch.bool)
|
923 |
+
intra_chunk_mask = torch.ones_like(token_types_chunks, dtype=torch.bool)
|
924 |
+
|
925 |
+
for chunk_idx in range(num_chunks):
|
926 |
+
for batch_idx in range(batch_size):
|
927 |
+
# Identify tokens in the current chunk belonging to each sequence
|
928 |
+
chunk = token_types_chunks[batch_idx, chunk_idx]
|
929 |
+
unique_elements = torch.unique(chunk, sorted=True).tolist()
|
930 |
+
|
931 |
+
# Create a mask for whether each token can attend to the current chunk
|
932 |
+
for token_type in unique_elements:
|
933 |
+
if token_type == article_separator:
|
934 |
+
continue
|
935 |
+
token_mask = (token_types[batch_idx] == token_type)
|
936 |
+
inter_chunk_mask[batch_idx, :, chunk_idx] |= token_mask
|
937 |
+
|
938 |
+
# Create a mask within each chunk
|
939 |
+
unique_elements = [x for x in unique_elements if x != article_separator]
|
940 |
+
if len(unique_elements) > 1 and chunk[-1] != article_separator:
|
941 |
+
intra_chunk_mask[batch_idx, chunk_idx] = (chunk == unique_elements[-1])
|
942 |
+
|
943 |
+
inter_chunk_mask = ~inter_chunk_mask
|
944 |
+
intra_chunk_mask = ~intra_chunk_mask
|
945 |
+
|
946 |
+
window_mask = torch.logical_or(window_causal_mask, window_3d_mask.unsqueeze(1))
|
947 |
+
inter_chunk_mask = torch.logical_or(chunk_causal_mask, inter_chunk_mask.unsqueeze(1))
|
948 |
+
intra_chunk_mask = intra_chunk_mask.unsqueeze(1).unsqueeze(-1)
|
949 |
+
|
950 |
+
joint_mask = torch.cat([window_mask, inter_chunk_mask.reshape(*window_mask.shape)], dim=-1)
|
951 |
+
attention_mask = (joint_mask, intra_chunk_mask)
|
952 |
+
else:
|
953 |
+
joint_mask = torch.cat([window_causal_mask, chunk_causal_mask.reshape(*window_causal_mask.shape)], dim=-1)
|
954 |
+
attention_mask = (joint_mask, None)
|
955 |
+
return attention_mask
|
956 |
+
|
957 |
+
def forward(
|
958 |
+
self,
|
959 |
+
input_ids: torch.LongTensor = None,
|
960 |
+
attention_mask: Optional[torch.Tensor] = None,
|
961 |
+
position_ids: Optional[torch.LongTensor] = None,
|
962 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
963 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
964 |
+
labels: Optional[torch.LongTensor] = None,
|
965 |
+
use_cache: Optional[bool] = None,
|
966 |
+
output_attentions: Optional[bool] = None,
|
967 |
+
output_hidden_states: Optional[bool] = None,
|
968 |
+
return_dict: Optional[bool] = None,
|
969 |
+
return_all_pred_logits: Optional[bool] = None,
|
970 |
+
multibyte_decoding: Optional[bool] = None) -> Union[Tuple, CausalLMOutputWithPast]:
|
971 |
+
|
972 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
973 |
+
output_hidden_states = (output_hidden_states
|
974 |
+
if output_hidden_states is not None else self.config.output_hidden_states)
|
975 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
976 |
+
|
977 |
+
if input_ids is None:
|
978 |
+
assert past_key_values is None
|
979 |
+
|
980 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
981 |
+
outputs = self.model(
|
982 |
+
input_ids=input_ids,
|
983 |
+
attention_mask=attention_mask,
|
984 |
+
position_ids=position_ids,
|
985 |
+
past_key_values=past_key_values,
|
986 |
+
inputs_embeds=inputs_embeds,
|
987 |
+
use_cache=use_cache,
|
988 |
+
output_attentions=output_attentions,
|
989 |
+
output_hidden_states=output_hidden_states,
|
990 |
+
return_dict=return_dict,
|
991 |
+
multibyte_decoding=multibyte_decoding,
|
992 |
+
)
|
993 |
+
|
994 |
+
hidden_states = outputs[0]
|
995 |
+
|
996 |
+
logits = self.lm_head(hidden_states)
|
997 |
+
if self.config.fp32_logits:
|
998 |
+
logits = logits.float()
|
999 |
+
|
1000 |
+
loss = None
|
1001 |
+
if labels is not None:
|
1002 |
+
loss_fct = CrossEntropyLoss(reduction="none")
|
1003 |
+
if hasattr(self.config, "num_pred_heads") and self.config.num_pred_heads > 1:
|
1004 |
+
shift_logits = logits.view(logits.shape[0], logits.shape[1], self.config.num_pred_heads, self.config.vocab_size)
|
1005 |
+
# shift_logits = shift_logits.view(-1, logits.shape[1] * self.config.num_pred_heads, self.config.vocab_size)
|
1006 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1007 |
+
else:
|
1008 |
+
shift_logits = logits.view(-1, self.config.vocab_size)
|
1009 |
+
shift_labels = labels.view(-1)
|
1010 |
+
# Enable model parallelism
|
1011 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1012 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1013 |
+
|
1014 |
+
if hasattr(self.config, "num_pred_heads") and self.config.num_pred_heads > 1:
|
1015 |
+
all_pred_logits = logits.reshape(logits.shape[0], logits.shape[1], self.config.num_pred_heads, self.config.vocab_size)
|
1016 |
+
|
1017 |
+
if return_all_pred_logits:
|
1018 |
+
logits = all_pred_logits
|
1019 |
+
else:
|
1020 |
+
logits = all_pred_logits[..., 0, :]
|
1021 |
+
|
1022 |
+
if not return_dict:
|
1023 |
+
output = (logits, ) + outputs[1:]
|
1024 |
+
return (loss, ) + output if loss is not None else output
|
1025 |
+
|
1026 |
+
return CausalLMOutputWithPast(
|
1027 |
+
loss=loss,
|
1028 |
+
logits=logits,
|
1029 |
+
past_key_values=outputs.past_key_values,
|
1030 |
+
hidden_states=outputs.hidden_states,
|
1031 |
+
attentions=outputs.attentions,
|
1032 |
+
)
|
1033 |
+
|
1034 |
+
|
1035 |
+
def prepare_inputs_for_generation(self,
|
1036 |
+
input_ids,
|
1037 |
+
past_key_values=None,
|
1038 |
+
attention_mask=None,
|
1039 |
+
inputs_embeds=None,
|
1040 |
+
use_cache=True,
|
1041 |
+
**kwargs):
|
1042 |
+
# prefill phase:
|
1043 |
+
# input_ids: b x s
|
1044 |
+
# attention_mask: None if no padding or b x s
|
1045 |
+
# position_ids : b x s
|
1046 |
+
|
1047 |
+
# token gen phase:
|
1048 |
+
# input_ids : b x 1
|
1049 |
+
# attention_mask: b x 1 x s
|
1050 |
+
# position_ids: b x 1
|
1051 |
+
past_length = 0
|
1052 |
+
if past_key_values is not None:
|
1053 |
+
assert isinstance(past_key_values, Cache)
|
1054 |
+
past_length = past_key_values.get_seq_length()
|
1055 |
+
|
1056 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1057 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
|
1058 |
+
elif past_length < input_ids.shape[1]:
|
1059 |
+
input_ids = input_ids[:, past_length:]
|
1060 |
+
|
1061 |
+
position_ids = kwargs.get("position_ids", None)
|
1062 |
+
if attention_mask is not None and position_ids is None:
|
1063 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1064 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1065 |
+
if past_key_values:
|
1066 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
1067 |
+
|
1068 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1069 |
+
if inputs_embeds is not None and past_key_values is None:
|
1070 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1071 |
+
else:
|
1072 |
+
model_inputs = {"input_ids": input_ids}
|
1073 |
+
|
1074 |
+
# must initialize position_ids at each step during GPU inference
|
1075 |
+
assert position_ids is not None
|
1076 |
+
model_inputs.update(
|
1077 |
+
{
|
1078 |
+
"position_ids": position_ids,
|
1079 |
+
"past_key_values": past_key_values,
|
1080 |
+
"use_cache": use_cache,
|
1081 |
+
"attention_mask": attention_mask,
|
1082 |
+
}
|
1083 |
+
)
|
1084 |
+
return model_inputs
|
1085 |
+
|
1086 |
+
@staticmethod
|
1087 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1088 |
+
reordered_past = ()
|
1089 |
+
for layer_past in past_key_values:
|
1090 |
+
reordered_past += (tuple(
|
1091 |
+
past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), )
|
1092 |
+
return reordered_past
|
multibyte_decoding_evabyte.py
ADDED
@@ -0,0 +1,881 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# The implementation of multibyte deocidng is largely adapted from
|
3 |
+
# Medusa decoding: https://github.com/FasterDecoding/Medusa
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from transformers.generation.stopping_criteria import (
|
7 |
+
MaxLengthCriteria,
|
8 |
+
StoppingCriteriaList,
|
9 |
+
)
|
10 |
+
from typing import Union, List
|
11 |
+
from .eva_cache import EvaStaticCacheForTriton
|
12 |
+
from .eva_prep_kv_kernel import triton_eva_prep_kv_fwd
|
13 |
+
|
14 |
+
class MultibyteEosTokenCriteria:
|
15 |
+
"""
|
16 |
+
This class implements a simple stopping criteria to stop generation whenever
|
17 |
+
the "end-of-sequence" token is generated in the last `new_tokens` tokens.
|
18 |
+
|
19 |
+
Adapted from
|
20 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/generation/stopping_criteria.py#L446
|
21 |
+
By default, it uses the `model.generation_config.eos_token_id`.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
eos_token_id (`Union[int, List[int]]`):
|
25 |
+
The id(s) of the *end-of-sequence* token.
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(self, eos_token_ids: Union[int, List[int]]):
|
29 |
+
if isinstance(eos_token_ids, int):
|
30 |
+
eos_token_ids = [eos_token_ids]
|
31 |
+
self.eos_token_ids = eos_token_ids
|
32 |
+
|
33 |
+
def __call__(self, input_ids: torch.LongTensor, new_tokens: int) -> bool:
|
34 |
+
current_input_len = input_ids.shape[-1]
|
35 |
+
new_token_ids = input_ids[:, current_input_len - new_tokens:]
|
36 |
+
for eos_token_id in self.eos_token_ids:
|
37 |
+
if torch.any(new_token_ids == eos_token_id):
|
38 |
+
return True
|
39 |
+
return False
|
40 |
+
|
41 |
+
def build_tree(spec):
|
42 |
+
nodes_at_depth = []
|
43 |
+
nodes_at_depth.append([()]) # Root at depth 1
|
44 |
+
|
45 |
+
for d in range(1, len(spec) + 1):
|
46 |
+
prev_nodes = nodes_at_depth[d - 1]
|
47 |
+
spec_list = spec[d - 1]
|
48 |
+
current_nodes = []
|
49 |
+
for node_idx, node in enumerate(prev_nodes):
|
50 |
+
if node_idx < len(spec_list):
|
51 |
+
num_children = spec_list[node_idx]
|
52 |
+
else:
|
53 |
+
num_children = 0
|
54 |
+
for child_idx in range(num_children):
|
55 |
+
new_node = node + (child_idx,)
|
56 |
+
current_nodes.append(new_node)
|
57 |
+
nodes_at_depth.append(current_nodes)
|
58 |
+
|
59 |
+
# Flatten the list of nodes, excluding the root node if desired
|
60 |
+
all_nodes = [node for depth_nodes in nodes_at_depth for node in depth_nodes if node]
|
61 |
+
return all_nodes
|
62 |
+
|
63 |
+
evabyte_7b_95 = build_tree(
|
64 |
+
[
|
65 |
+
[10],
|
66 |
+
[10, 8, 2, 2, 1, 1],
|
67 |
+
[10, 4, 2, 1, 0, 0, 0, 0, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1],
|
68 |
+
[8, 2, 2, 1, 0, 0, 0, 0, 0, 0, 1],
|
69 |
+
[6, 2, 1, 1],
|
70 |
+
[4, 2, 1, 1],
|
71 |
+
[4, 2, 1],
|
72 |
+
]
|
73 |
+
)
|
74 |
+
evabyte_7b_31 = build_tree(
|
75 |
+
[
|
76 |
+
[4],
|
77 |
+
[3, 2, 1, 1],
|
78 |
+
[3, 2, 1, 1],
|
79 |
+
[2, 1, 1],
|
80 |
+
[2, 1],
|
81 |
+
[2, 1],
|
82 |
+
[2, 1],
|
83 |
+
]
|
84 |
+
)
|
85 |
+
TOPK = 10 # topk for sparse tree (10 is a placeholder and it is sufficient)
|
86 |
+
|
87 |
+
def pad_path(path, length, pad_value=-2):
|
88 |
+
"""
|
89 |
+
Pad the given path list with a specific value up to a specified length.
|
90 |
+
|
91 |
+
Parameters:
|
92 |
+
- path (list): The original list that needs padding.
|
93 |
+
- length (int): The desired length of the padded list.
|
94 |
+
- pad_value (optional, default=-2): The value to use for padding.
|
95 |
+
|
96 |
+
Returns:
|
97 |
+
- list: A new list based on the original path but padded to the desired length.
|
98 |
+
|
99 |
+
Example:
|
100 |
+
>>> pad_path([1,2,3], 5)
|
101 |
+
[1, 2, 3, -2, -2]
|
102 |
+
|
103 |
+
Note:
|
104 |
+
If the given path is already longer than the specified length,
|
105 |
+
then no padding occurs, and the original path is returned.
|
106 |
+
"""
|
107 |
+
return path + [pad_value] * (length - len(path))
|
108 |
+
|
109 |
+
def reset_past_key_values(passed_key_values):
|
110 |
+
"""
|
111 |
+
Resets the current lengths in the passed key-values to zero.
|
112 |
+
|
113 |
+
This function is designed to be used during the evaluation of a baseline model.
|
114 |
+
It iterates through each layer's key-values and sets their current lengths to zero,
|
115 |
+
effectively resetting their state.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
- passed_key_values (list of torch.Tensor): Contains past hidden states and past attention values for each layer.
|
119 |
+
|
120 |
+
Returns:
|
121 |
+
- passed_key_values (list of torch.Tensor): Updated past hidden states and past attention values with reset lengths.
|
122 |
+
"""
|
123 |
+
for i in range(len(passed_key_values)):
|
124 |
+
for j in range(2):
|
125 |
+
passed_key_values[i][j].current_length.fill_(0)
|
126 |
+
return passed_key_values
|
127 |
+
|
128 |
+
def get_nucleus_one_token(logit, temperature, top_p):
|
129 |
+
"""
|
130 |
+
Performs token sampling based on the nucleus (top-p) sampling method.
|
131 |
+
|
132 |
+
This function selects a token from a given logit distribution using the nucleus sampling strategy.
|
133 |
+
It allows for more controlled and diverse generation compared to traditional top-k sampling.
|
134 |
+
|
135 |
+
Args:
|
136 |
+
logit (torch.Tensor): The logits from a language model output, expected to be a 2D tensor (BxC).
|
137 |
+
temperature (float): A temperature parameter to control the randomness in sampling.
|
138 |
+
Higher values increase diversity, lower values make selections more deterministic.
|
139 |
+
top_p (float): The cumulative probability threshold for nucleus sampling.
|
140 |
+
It controls the size of the set of high-probability tokens to consider for sampling.
|
141 |
+
|
142 |
+
Returns:
|
143 |
+
torch.Tensor: A tensor containing the indices of the sampled tokens.
|
144 |
+
"""
|
145 |
+
if top_p >= 1:
|
146 |
+
return torch.multinomial(F.softmax(logit / temperature, dim=-1), 1)
|
147 |
+
logit = logit / temperature
|
148 |
+
probs = torch.softmax(logit, dim=-1)
|
149 |
+
sorted_logits, sorted_indices = torch.sort(probs, descending=True)
|
150 |
+
cum_probs = torch.cumsum(sorted_logits, dim=-1)
|
151 |
+
sorted_indices_to_remove = cum_probs > top_p
|
152 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
153 |
+
sorted_indices_to_remove[..., 0] = 0
|
154 |
+
indices_to_remove = sorted_indices_to_remove.scatter(dim=1, index=sorted_indices, src=sorted_indices_to_remove)
|
155 |
+
logit[indices_to_remove] = float('-inf')
|
156 |
+
sampled_tokens = torch.multinomial(F.softmax(logit, dim=-1), 1)
|
157 |
+
return sampled_tokens
|
158 |
+
|
159 |
+
def get_typical_one_token(logit, temperature, posterior_threshold, posterior_alpha):
|
160 |
+
"""
|
161 |
+
Implements token sampling based on the typical sampling method.
|
162 |
+
|
163 |
+
This function selects a token from a given logit distribution using the typical sampling strategy,
|
164 |
+
aiming to balance between diversity and likelihood in a more nuanced way compared to traditional methods.
|
165 |
+
|
166 |
+
Args:
|
167 |
+
logit (torch.Tensor): The logits from a language model output, expected to be a 2D tensor.
|
168 |
+
temperature (float): A parameter to control the randomness in sampling.
|
169 |
+
Higher values increase diversity, lower values make selections more deterministic.
|
170 |
+
posterior_threshold (float): A threshold to decide the lower bound of probabilities to be considered for sampling.
|
171 |
+
posterior_alpha (float): A scaling factor applied to the entropy-based adaptive threshold.
|
172 |
+
|
173 |
+
Returns:
|
174 |
+
torch.Tensor: A tensor containing the indices of the sampled tokens.
|
175 |
+
"""
|
176 |
+
logit = logit / temperature
|
177 |
+
probs = torch.softmax(logit, dim=-1)
|
178 |
+
entropy = -torch.sum(
|
179 |
+
probs * torch.log(probs + 1e-5), dim=-1
|
180 |
+
)
|
181 |
+
threshold = torch.minimum(
|
182 |
+
torch.ones_like(entropy) * posterior_threshold,
|
183 |
+
torch.exp(-entropy) * posterior_alpha,
|
184 |
+
)
|
185 |
+
indices_to_remove = probs < threshold.unsqueeze(-1)
|
186 |
+
logit[indices_to_remove] = float('-inf')
|
187 |
+
sampled_tokens = torch.multinomial(F.softmax(logit, dim=-1), 1)
|
188 |
+
return sampled_tokens
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
def generate_medusa_buffers(medusa_choices, device="cuda"):
|
193 |
+
"""
|
194 |
+
Generate buffers for the Medusa structure based on the provided choices.
|
195 |
+
|
196 |
+
Parameters:
|
197 |
+
- medusa_choices (list): A nested list representing tree in the Medusa structure.
|
198 |
+
- device (str): Device to which the tensors should be moved. Default is "cuda".
|
199 |
+
|
200 |
+
Returns:
|
201 |
+
- dict: A dictionary containing buffers related to the Medusa structure.
|
202 |
+
"""
|
203 |
+
|
204 |
+
# Sort the medusa_choices based on their lengths and then their values
|
205 |
+
sorted_medusa_choices = sorted(medusa_choices, key=lambda x: (len(x), x))
|
206 |
+
medusa_len = len(sorted_medusa_choices) + 1
|
207 |
+
|
208 |
+
# Initialize depth_counts to keep track of how many choices have a particular depth
|
209 |
+
depth_counts = [0] * max([len(path) for path in sorted_medusa_choices])
|
210 |
+
for path in sorted_medusa_choices:
|
211 |
+
depth_counts[len(path) - 1] += 1
|
212 |
+
|
213 |
+
# Create the attention mask for Medusa
|
214 |
+
medusa_attn_mask = torch.eye(medusa_len, medusa_len)
|
215 |
+
medusa_attn_mask[:, 0] = 1
|
216 |
+
start = 0
|
217 |
+
for i in range(len(depth_counts)):
|
218 |
+
for j in range(depth_counts[i]):
|
219 |
+
cur_medusa_choice = sorted_medusa_choices[start + j]
|
220 |
+
# retrieve ancestor position
|
221 |
+
if len(cur_medusa_choice) == 1:
|
222 |
+
continue
|
223 |
+
ancestor_idx = []
|
224 |
+
for c in range(len(cur_medusa_choice) - 1):
|
225 |
+
ancestor_idx.append(sorted_medusa_choices.index(cur_medusa_choice[:c+1]) + 1)
|
226 |
+
medusa_attn_mask[j + start + 1, ancestor_idx] = 1
|
227 |
+
start += depth_counts[i]
|
228 |
+
|
229 |
+
# Generate tree indices for the Medusa structure
|
230 |
+
medusa_tree_indices = torch.zeros(medusa_len, dtype=torch.long)
|
231 |
+
medusa_tree_indices[0] = 0
|
232 |
+
start = 0
|
233 |
+
for i in range(len(depth_counts)):
|
234 |
+
for j in range(depth_counts[i]):
|
235 |
+
cur_medusa_choice = sorted_medusa_choices[start + j]
|
236 |
+
medusa_tree_indices[start + j + 1] = cur_medusa_choice[-1] + TOPK * i + 1
|
237 |
+
start += depth_counts[i]
|
238 |
+
|
239 |
+
# Generate position IDs for the Medusa structure
|
240 |
+
medusa_position_ids = torch.zeros(medusa_len, dtype=torch.long)
|
241 |
+
start = 0
|
242 |
+
for i in range(len(depth_counts)):
|
243 |
+
medusa_position_ids[start + 1: start + depth_counts[i] + 1] = i + 1
|
244 |
+
start += depth_counts[i]
|
245 |
+
|
246 |
+
# Generate retrieval indices for Medusa structure verification
|
247 |
+
retrieve_indices_nest = []
|
248 |
+
retrieve_paths = []
|
249 |
+
for i in range(len(sorted_medusa_choices)):
|
250 |
+
cur_medusa_choice = sorted_medusa_choices[-i-1]
|
251 |
+
retrieve_indice = []
|
252 |
+
if cur_medusa_choice in retrieve_paths:
|
253 |
+
continue
|
254 |
+
else:
|
255 |
+
for c in range(len(cur_medusa_choice)):
|
256 |
+
retrieve_indice.append(sorted_medusa_choices.index(cur_medusa_choice[:c+1]))
|
257 |
+
retrieve_paths.append(cur_medusa_choice[:c+1])
|
258 |
+
retrieve_indices_nest.append(retrieve_indice)
|
259 |
+
max_length = max([len(x) for x in retrieve_indices_nest])
|
260 |
+
retrieve_indices = [pad_path(path, max_length) for path in retrieve_indices_nest]
|
261 |
+
retrieve_indices = torch.tensor(retrieve_indices, dtype=torch.long)
|
262 |
+
retrieve_indices = retrieve_indices + 1
|
263 |
+
retrieve_indices = torch.cat([torch.zeros((retrieve_indices.shape[0], 1), dtype=torch.long), retrieve_indices], dim=1)
|
264 |
+
|
265 |
+
# Aggregate the generated buffers into a dictionary
|
266 |
+
medusa_buffers = {
|
267 |
+
"medusa_attn_mask": medusa_attn_mask.unsqueeze(0).unsqueeze(0),
|
268 |
+
"tree_indices": medusa_tree_indices,
|
269 |
+
"medusa_position_ids": medusa_position_ids.unsqueeze(0),
|
270 |
+
"retrieve_indices": retrieve_indices,
|
271 |
+
}
|
272 |
+
|
273 |
+
# Move the tensors in the dictionary to the specified device
|
274 |
+
medusa_buffers = {
|
275 |
+
k: v.clone().to(device)
|
276 |
+
if isinstance(v, torch.Tensor)
|
277 |
+
else torch.tensor(v, device=device)
|
278 |
+
for k, v in medusa_buffers.items()
|
279 |
+
}
|
280 |
+
return medusa_buffers
|
281 |
+
|
282 |
+
def generate_candidates(
|
283 |
+
medusa_logits,
|
284 |
+
logits,
|
285 |
+
tree_indices,
|
286 |
+
retrieve_indices,
|
287 |
+
temperature = 0,
|
288 |
+
posterior_threshold=0.3,
|
289 |
+
posterior_alpha = 0.09,
|
290 |
+
top_p=0.8,
|
291 |
+
sampling = 'typical',
|
292 |
+
fast = False
|
293 |
+
):
|
294 |
+
# Say we have 3 heads, and the top-4 for each head are:
|
295 |
+
# [10, 3, 8, 4]
|
296 |
+
# [9, 5, 1, 6]
|
297 |
+
# [7, 16, 3, 2]
|
298 |
+
|
299 |
+
# candidates_id = 10
|
300 |
+
if temperature == 0 or fast:
|
301 |
+
candidates_ids = torch.argmax(logits[:, -1]).unsqueeze(0)
|
302 |
+
else:
|
303 |
+
if sampling == 'typical':
|
304 |
+
candidates_ids = get_typical_one_token(logits[:, -1], temperature, posterior_threshold, posterior_alpha).squeeze(0)
|
305 |
+
elif sampling == 'nucleus':
|
306 |
+
candidates_ids = get_nucleus_one_token(logits[:, -1], temperature, top_p).squeeze(0)
|
307 |
+
else:
|
308 |
+
raise NotImplementedError
|
309 |
+
|
310 |
+
# this calculates the top-k medusa logits
|
311 |
+
# candidates_medusa_id = [
|
312 |
+
# [9, 5, 1, 6]
|
313 |
+
# [7, 16, 3, 2]
|
314 |
+
# ]
|
315 |
+
candidates_medusa_ids = torch.topk(medusa_logits[:, 0, -1], TOPK, dim=-1).indices
|
316 |
+
|
317 |
+
# [10, 9, 5, 1, 6, 7, 16, 3, 2]
|
318 |
+
candidate_ids = torch.cat([candidates_ids, candidates_medusa_ids.view(-1)], dim=-1)
|
319 |
+
|
320 |
+
# based on the pre-defined tree_indices, select the corresponding candidates
|
321 |
+
# if we select top-2 and top-3 for the two heads (we select top-1 for the first head):
|
322 |
+
# tree_candidates = [10, 9, 5, 7, 16, 3, 7, 16, 3]
|
323 |
+
tree_candidate_ids = candidate_ids[tree_indices]
|
324 |
+
|
325 |
+
# tree_candidate_ids = [10, 9, 5, 7, 16, 3, 7, 16, 3, 0]
|
326 |
+
# Sometimes the tree_indices are padded, so we append a zero here
|
327 |
+
# so that all padded indices select the appended zero.
|
328 |
+
tree_candidate_ids_ext = torch.cat(
|
329 |
+
[
|
330 |
+
tree_candidate_ids,
|
331 |
+
torch.zeros((1), dtype=torch.long, device=tree_candidate_ids.device)
|
332 |
+
],
|
333 |
+
dim=0
|
334 |
+
)
|
335 |
+
# [[10, 9, 7], [10, 9, 16], [10, 9, 3], [10, 5, 7], [10, 5, 16], [10, 5, 3]]
|
336 |
+
unflattened_candidate_ids = tree_candidate_ids_ext[retrieve_indices]
|
337 |
+
|
338 |
+
tree_candidate_ids = tree_candidate_ids.unsqueeze(0)
|
339 |
+
|
340 |
+
return tree_candidate_ids, unflattened_candidate_ids
|
341 |
+
|
342 |
+
def get_nucleus_posterior_mask(logits, candidates, temperature, top_p):
|
343 |
+
"""
|
344 |
+
Generates a posterior mask for token candidates using nucleus (top-p) sampling.
|
345 |
+
|
346 |
+
This function applies nucleus sampling to a set of logits, and then generates a mask indicating
|
347 |
+
which candidate tokens are selected. It adapts the sampling strategy to accommodate for
|
348 |
+
temperature scaling and cumulative probability thresholding.
|
349 |
+
|
350 |
+
Args:
|
351 |
+
logits (torch.Tensor): A tensor of logits from a language model output.
|
352 |
+
candidates (torch.Tensor): A tensor of candidate tokens to compare against sampled tokens.
|
353 |
+
temperature (float): A parameter to scale the logits, controlling randomness in sampling.
|
354 |
+
top_p (float): The cumulative probability threshold for nucleus sampling.
|
355 |
+
|
356 |
+
Returns:
|
357 |
+
torch.Tensor: A posterior mask indicating which candidate tokens match the sampled tokens.
|
358 |
+
"""
|
359 |
+
# adapted from https://github.com/huggingface/transformers/blob/18a879f47576822aa1a5c49aecb27d89bfa5fa69/examples/run_generation.py#L79
|
360 |
+
|
361 |
+
# Apply temperature
|
362 |
+
logits = logits[:, :-1] / temperature
|
363 |
+
n_samples, n_tokens = logits.shape[0], logits.shape[1]
|
364 |
+
logits = logits.view(n_samples*n_tokens, -1)
|
365 |
+
if top_p >= 1:
|
366 |
+
sampled_tokens = torch.multinomial(F.softmax(logits, dim=-1), 1)
|
367 |
+
sampled_tokens = sampled_tokens.view(n_samples, n_tokens)
|
368 |
+
posterior_mask = (candidates[:, 1:] == sampled_tokens).int()
|
369 |
+
return posterior_mask
|
370 |
+
# Convert to probabilities (softmax)
|
371 |
+
probs = F.softmax(logits, dim=-1)
|
372 |
+
# Sort the probabilities
|
373 |
+
sorted_logits, sorted_indices = torch.sort(probs, descending=True)
|
374 |
+
|
375 |
+
# Compute cumulative probabilities
|
376 |
+
cum_probs = torch.cumsum(sorted_logits, dim=-1)
|
377 |
+
|
378 |
+
# Create mask for the top-p nucleus
|
379 |
+
sorted_indices_to_remove = cum_probs > top_p
|
380 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
381 |
+
sorted_indices_to_remove[..., 0] = 0
|
382 |
+
|
383 |
+
indices_to_remove = sorted_indices_to_remove.scatter(dim=1, index=sorted_indices, src=sorted_indices_to_remove)
|
384 |
+
|
385 |
+
|
386 |
+
# Remove low-probability tokens
|
387 |
+
logits[indices_to_remove] = float('-inf')
|
388 |
+
# Sample from the remaining tokens
|
389 |
+
sampled_tokens = torch.multinomial(F.softmax(logits, dim=-1), 1)
|
390 |
+
sampled_tokens = sampled_tokens.view(n_samples, n_tokens)
|
391 |
+
# Create a mask for selected tokens
|
392 |
+
posterior_mask = (candidates[:, 1:] == sampled_tokens).int()
|
393 |
+
|
394 |
+
return posterior_mask
|
395 |
+
|
396 |
+
def get_typical_posterior_mask(logits, candidates, temperature, posterior_threshold, posterior_alpha):
|
397 |
+
"""
|
398 |
+
Args:
|
399 |
+
logits (torch.Tensor): A tensor of logits from a language model output.
|
400 |
+
candidates (torch.Tensor): A tensor of candidate tokens to compare against sampled tokens.
|
401 |
+
temperature (float): A parameter to scale the logits, controlling randomness in sampling.
|
402 |
+
posterior_threshold (float): The minimum threshold for probabilities to be considered in sampling.
|
403 |
+
posterior_alpha (float): A scaling factor applied to the entropy-based adaptive threshold.
|
404 |
+
|
405 |
+
Returns:
|
406 |
+
torch.Tensor: A posterior mask indicating which candidate tokens match the sampled tokens.
|
407 |
+
"""
|
408 |
+
logits = logits[:, :-1] / temperature
|
409 |
+
n_samples, n_tokens = logits.shape[0], logits.shape[1]
|
410 |
+
logits = logits.view(n_samples*n_tokens, -1)
|
411 |
+
probs = F.softmax(logits, dim=-1)
|
412 |
+
entropy = -torch.sum(
|
413 |
+
probs * torch.log(probs + 1e-5), dim=-1
|
414 |
+
)
|
415 |
+
threshold = torch.minimum(
|
416 |
+
torch.ones_like(entropy) * posterior_threshold,
|
417 |
+
torch.exp(-entropy) * posterior_alpha,
|
418 |
+
)
|
419 |
+
indices_to_remove = probs < threshold.unsqueeze(-1)
|
420 |
+
logits[indices_to_remove] = float('-inf')
|
421 |
+
sampled_tokens = torch.multinomial(F.softmax(logits, dim=-1), 1)
|
422 |
+
sampled_tokens = sampled_tokens.view(n_samples, n_tokens)
|
423 |
+
posterior_mask = (candidates[:, 1:] == sampled_tokens).int()
|
424 |
+
return posterior_mask
|
425 |
+
|
426 |
+
|
427 |
+
|
428 |
+
def evaluate_posterior(
|
429 |
+
logits,
|
430 |
+
candidates,
|
431 |
+
temperature,
|
432 |
+
posterior_threshold=0.3,
|
433 |
+
posterior_alpha = 0.09,
|
434 |
+
top_p=0.8,
|
435 |
+
sampling = 'typical',
|
436 |
+
fast = True
|
437 |
+
):
|
438 |
+
if logits.shape[1] <= 1:
|
439 |
+
return torch.tensor(0, dtype=torch.long, device=candidates.device), 0
|
440 |
+
# Greedy decoding based on temperature value
|
441 |
+
if temperature == 0:
|
442 |
+
# Find the tokens that match the maximum logits for each position in the sequence
|
443 |
+
posterior_mask = (
|
444 |
+
candidates[:, 1:] == torch.argmax(logits[:, :-1], dim=-1)
|
445 |
+
).int()
|
446 |
+
candidates_accept_length = (torch.cumprod(posterior_mask, dim=1)).sum(dim=1)
|
447 |
+
accept_length = candidates_accept_length.max().item()
|
448 |
+
# Choose the best candidate
|
449 |
+
if accept_length == 0:
|
450 |
+
# Default to the first candidate if none are accepted
|
451 |
+
best_candidate = torch.tensor(0, dtype=torch.long, device=candidates.device)
|
452 |
+
else:
|
453 |
+
best_candidate = torch.argmax(candidates_accept_length).to(torch.long)
|
454 |
+
return best_candidate, accept_length
|
455 |
+
elif sampling == 'typical':
|
456 |
+
if fast:
|
457 |
+
posterior_prob = torch.softmax(logits[:, :-1] / temperature, dim=-1)
|
458 |
+
candidates_prob = torch.gather(
|
459 |
+
posterior_prob, dim=-1, index=candidates[:, 1:].unsqueeze(-1)
|
460 |
+
).squeeze(-1)
|
461 |
+
posterior_entropy = -torch.sum(
|
462 |
+
posterior_prob * torch.log(posterior_prob + 1e-5), dim=-1
|
463 |
+
) # torch.sum(torch.log(*)) is faster than torch.prod
|
464 |
+
threshold = torch.minimum(
|
465 |
+
torch.ones_like(posterior_entropy) * posterior_threshold,
|
466 |
+
torch.exp(-posterior_entropy) * posterior_alpha,
|
467 |
+
)
|
468 |
+
posterior_mask = candidates_prob > threshold
|
469 |
+
candidates_accept_length = (torch.cumprod(posterior_mask, dim=1)).sum(dim=1)
|
470 |
+
|
471 |
+
# Choose the best candidate based on the evaluated posterior probabilities
|
472 |
+
accept_length = candidates_accept_length.max().item()
|
473 |
+
if accept_length == 0:
|
474 |
+
# If no candidates are accepted, just choose the first one
|
475 |
+
best_candidate = torch.tensor(0, dtype=torch.long, device=candidates.device)
|
476 |
+
else:
|
477 |
+
best_candidates = torch.where(candidates_accept_length == accept_length)[0]
|
478 |
+
# Accept the best one according to likelihood
|
479 |
+
likelihood = torch.sum(
|
480 |
+
torch.log(candidates_prob[best_candidates, :accept_length]), dim=-1
|
481 |
+
)
|
482 |
+
best_candidate = best_candidates[torch.argmax(likelihood)]
|
483 |
+
return best_candidate, accept_length
|
484 |
+
# Calculate posterior probabilities and thresholds for candidate selection
|
485 |
+
posterior_mask = get_typical_posterior_mask(logits, candidates, temperature, posterior_threshold, posterior_alpha)
|
486 |
+
candidates_accept_length = (torch.cumprod(posterior_mask, dim=1)).sum(dim=1)
|
487 |
+
# Choose the best candidate based on the evaluated posterior probabilities
|
488 |
+
accept_length = candidates_accept_length.max().item()
|
489 |
+
|
490 |
+
if accept_length == 0:
|
491 |
+
# If no candidates are accepted, just choose the first one
|
492 |
+
best_candidate = torch.tensor(0, dtype=torch.long, device=candidates.device)
|
493 |
+
else:
|
494 |
+
best_candidate = torch.argmax(candidates_accept_length).to(torch.long)
|
495 |
+
# Accept the best one according to likelihood
|
496 |
+
return best_candidate, accept_length
|
497 |
+
elif sampling == 'nucleus':
|
498 |
+
assert top_p < 1.0 + 1e-6, "top_p should between 0 and 1"
|
499 |
+
posterior_mask = get_nucleus_posterior_mask(logits, candidates, temperature, top_p)
|
500 |
+
candidates_accept_length = (torch.cumprod(posterior_mask, dim=1)).sum(dim=1)
|
501 |
+
accept_length = candidates_accept_length.max().item()
|
502 |
+
# Choose the best candidate
|
503 |
+
if accept_length == 0:
|
504 |
+
# Default to the first candidate if none are accepted
|
505 |
+
best_candidate = torch.tensor(0, dtype=torch.long, device=candidates.device)
|
506 |
+
else:
|
507 |
+
best_candidate = torch.argmax(candidates_accept_length).to(torch.long)
|
508 |
+
return best_candidate, accept_length
|
509 |
+
else:
|
510 |
+
raise NotImplementedError
|
511 |
+
|
512 |
+
def update_inference_inputs(
|
513 |
+
input_ids,
|
514 |
+
medusa_logits,
|
515 |
+
logits,
|
516 |
+
candidate_ids,
|
517 |
+
best_candidate,
|
518 |
+
accept_length,
|
519 |
+
):
|
520 |
+
input_ids = torch.cat(
|
521 |
+
[
|
522 |
+
input_ids,
|
523 |
+
candidate_ids[None, best_candidate, : accept_length + 1]
|
524 |
+
],
|
525 |
+
dim=-1
|
526 |
+
)
|
527 |
+
logits = logits[
|
528 |
+
None, best_candidate, accept_length : accept_length + 1
|
529 |
+
]
|
530 |
+
medusa_logits = medusa_logits[
|
531 |
+
:, None, best_candidate, accept_length : accept_length + 1
|
532 |
+
]
|
533 |
+
# Update the new token counter
|
534 |
+
new_token = accept_length + 1
|
535 |
+
return input_ids, medusa_logits, logits, new_token
|
536 |
+
|
537 |
+
def split_logits(full_logits):
|
538 |
+
# logits has shape [b, n, heads, vocab_size]
|
539 |
+
logits = full_logits[..., 0, :]
|
540 |
+
medusa_logits = full_logits[..., 1:, :].permute(2, 0, 1, 3)
|
541 |
+
return medusa_logits, logits
|
542 |
+
|
543 |
+
class MultiByteDecodingMixin:
|
544 |
+
def multi_byte_pred_update_cache(
|
545 |
+
self,
|
546 |
+
past_key_values,
|
547 |
+
retrieve_indices,
|
548 |
+
best_candidate,
|
549 |
+
new_tokens,
|
550 |
+
):
|
551 |
+
prev_window_len = past_key_values.get_past_window_pos(0)
|
552 |
+
select_indices = (
|
553 |
+
retrieve_indices[best_candidate, : new_tokens] + prev_window_len
|
554 |
+
)
|
555 |
+
for layer_idx in range(self.config.num_hidden_layers):
|
556 |
+
|
557 |
+
past_key_values.update_past_len(new_tokens, layer_idx)
|
558 |
+
|
559 |
+
past_window_k = past_key_values.past_window_k[layer_idx]
|
560 |
+
past_window_v = past_key_values.past_window_v[layer_idx]
|
561 |
+
|
562 |
+
tgt_window_k = past_window_k[..., select_indices, :]
|
563 |
+
tgt_window_v = past_window_v[..., select_indices, :]
|
564 |
+
|
565 |
+
dst_window_k = past_window_k[..., prev_window_len : prev_window_len + new_tokens, :]
|
566 |
+
dst_window_v = past_window_v[..., prev_window_len : prev_window_len + new_tokens, :]
|
567 |
+
|
568 |
+
dst_window_k.copy_(tgt_window_k, non_blocking=True)
|
569 |
+
dst_window_v.copy_(tgt_window_v, non_blocking=True)
|
570 |
+
|
571 |
+
new_window_len = prev_window_len + new_tokens
|
572 |
+
if new_window_len >= self.config.window_size:
|
573 |
+
assert new_window_len < 2 * self.config.window_size
|
574 |
+
|
575 |
+
dump_k = past_window_k[..., :self.config.window_size, :].clone()
|
576 |
+
dump_v = past_window_v[..., :self.config.window_size, :].clone()
|
577 |
+
|
578 |
+
_window_len = new_window_len - self.config.window_size
|
579 |
+
|
580 |
+
if _window_len > 0:
|
581 |
+
new_window_k = past_window_k[..., self.config.window_size : new_window_len, :]
|
582 |
+
new_window_v = past_window_v[..., self.config.window_size : new_window_len, :]
|
583 |
+
|
584 |
+
_dst_window_k = past_window_k[..., : _window_len, :]
|
585 |
+
_dst_window_v = past_window_v[..., : _window_len, :]
|
586 |
+
|
587 |
+
_dst_window_k.copy_(new_window_k, non_blocking=True)
|
588 |
+
_dst_window_v.copy_(new_window_v, non_blocking=True)
|
589 |
+
|
590 |
+
past_key_values.past_window_pos[layer_idx] = _window_len
|
591 |
+
else:
|
592 |
+
dump_k = None
|
593 |
+
dump_v = None
|
594 |
+
past_key_values.past_window_pos[layer_idx] = new_window_len
|
595 |
+
|
596 |
+
if dump_k is not None and dump_v is not None:
|
597 |
+
rfa_k, rfa_v = triton_eva_prep_kv_fwd(
|
598 |
+
dump_k, dump_v,
|
599 |
+
self.model.layers[layer_idx].self_attn.adaptive_mu_k,
|
600 |
+
self.model.layers[layer_idx].self_attn.adaptive_phi,
|
601 |
+
None,
|
602 |
+
self.model.layers[layer_idx].self_attn.head_dim_scaling,
|
603 |
+
self.model.layers[layer_idx].self_attn.chunk_size
|
604 |
+
)
|
605 |
+
rfa_k, rfa_v = past_key_values.update_chunk_rfas(
|
606 |
+
rfa_k, rfa_v, layer_idx
|
607 |
+
)
|
608 |
+
return past_key_values
|
609 |
+
|
610 |
+
def _multi_byte_pred_update_cache_when_prefil_len_eq_window_size(
|
611 |
+
self,
|
612 |
+
past_key_values,
|
613 |
+
):
|
614 |
+
prev_window_len = past_key_values.get_past_window_pos(0)
|
615 |
+
for layer_idx in range(self.config.num_hidden_layers):
|
616 |
+
|
617 |
+
past_window_k = past_key_values.past_window_k[layer_idx]
|
618 |
+
past_window_v = past_key_values.past_window_v[layer_idx]
|
619 |
+
|
620 |
+
new_window_len = prev_window_len
|
621 |
+
if new_window_len == self.config.window_size:
|
622 |
+
dump_k = past_window_k[..., :self.config.window_size, :].clone()
|
623 |
+
dump_v = past_window_v[..., :self.config.window_size, :].clone()
|
624 |
+
past_key_values.past_window_pos[layer_idx] = 0
|
625 |
+
|
626 |
+
if dump_k is not None and dump_v is not None:
|
627 |
+
rfa_k, rfa_v = triton_eva_prep_kv_fwd(
|
628 |
+
dump_k, dump_v,
|
629 |
+
self.model.layers[layer_idx].self_attn.adaptive_mu_k,
|
630 |
+
self.model.layers[layer_idx].self_attn.adaptive_phi,
|
631 |
+
None,
|
632 |
+
self.model.layers[layer_idx].self_attn.head_dim_scaling,
|
633 |
+
self.model.layers[layer_idx].self_attn.chunk_size
|
634 |
+
)
|
635 |
+
rfa_k, rfa_v = past_key_values.update_chunk_rfas(
|
636 |
+
rfa_k, rfa_v, layer_idx
|
637 |
+
)
|
638 |
+
return past_key_values
|
639 |
+
|
640 |
+
def multi_byte_pred_update_attn_mask(
|
641 |
+
self,
|
642 |
+
last_iter_new_tokens,
|
643 |
+
tree_candidate_ids,
|
644 |
+
past_attn_mask,
|
645 |
+
medusa_attn_mask,
|
646 |
+
past_key_values,
|
647 |
+
):
|
648 |
+
batch_size, tree_candidate_len = tree_candidate_ids.shape
|
649 |
+
seen_tokens = past_key_values.get_seq_length()
|
650 |
+
# NOTE: past_key_values has been updated so now
|
651 |
+
# seen_tokens incldues new tokens from the last tree iteration
|
652 |
+
assert seen_tokens > 0
|
653 |
+
# so one iteration would not cross two windows
|
654 |
+
assert last_iter_new_tokens < self.config.window_size
|
655 |
+
|
656 |
+
if past_attn_mask is not None and seen_tokens < self.config.window_size:
|
657 |
+
past_attn_mask = torch.cat(
|
658 |
+
[
|
659 |
+
past_attn_mask,
|
660 |
+
torch.ones(
|
661 |
+
[batch_size, 1, tree_candidate_len, last_iter_new_tokens],
|
662 |
+
dtype=torch.bool,
|
663 |
+
device=self.device
|
664 |
+
)
|
665 |
+
],
|
666 |
+
dim=-1
|
667 |
+
)
|
668 |
+
else:
|
669 |
+
# we initialize attn mask each time when
|
670 |
+
# 1. the model crosses the window bounary, or
|
671 |
+
# 2. after prefilling
|
672 |
+
chunks_per_window = int(self.config.window_size // self.config.chunk_size)
|
673 |
+
|
674 |
+
window_tokens = seen_tokens % self.config.window_size
|
675 |
+
num_windows_seen_so_far = seen_tokens // self.config.window_size
|
676 |
+
attn_mask_len = num_windows_seen_so_far * chunks_per_window + window_tokens
|
677 |
+
past_attn_mask = torch.ones(
|
678 |
+
(batch_size, 1, tree_candidate_len, attn_mask_len),
|
679 |
+
dtype=torch.bool,
|
680 |
+
device=self.device
|
681 |
+
)
|
682 |
+
|
683 |
+
# note that 1 indicates the position is not masked
|
684 |
+
tree_attn_mask = torch.cat(
|
685 |
+
[
|
686 |
+
past_attn_mask,
|
687 |
+
medusa_attn_mask.to(torch.bool)
|
688 |
+
],
|
689 |
+
dim=-1
|
690 |
+
)
|
691 |
+
return tree_attn_mask, past_attn_mask
|
692 |
+
|
693 |
+
@torch.no_grad()
|
694 |
+
def multi_byte_generate(
|
695 |
+
self,
|
696 |
+
input_ids,
|
697 |
+
attention_mask=None,
|
698 |
+
temperature=0.0,
|
699 |
+
max_length=None,
|
700 |
+
max_new_tokens=None,
|
701 |
+
stopping_criteria=None,
|
702 |
+
posterior_threshold=0.09,
|
703 |
+
posterior_alpha=0.3,
|
704 |
+
top_p=0.8,
|
705 |
+
sampling='typical',
|
706 |
+
fast=True,
|
707 |
+
do_sample=False,
|
708 |
+
medusa_choices=None,
|
709 |
+
return_acc_lengths=False
|
710 |
+
):
|
711 |
+
if do_sample or temperature > 0.0:
|
712 |
+
fast = False
|
713 |
+
|
714 |
+
### Prepare `max_length` depending on other stopping criteria.
|
715 |
+
if max_new_tokens is not None:
|
716 |
+
max_length = max_new_tokens + input_ids.shape[-1]
|
717 |
+
elif max_new_tokens is None and max_length is None:
|
718 |
+
max_length = getattr(self.config, "max_position_embeddings", 32768)
|
719 |
+
|
720 |
+
### Set up stopping criteria
|
721 |
+
eos_stop_criteria = MultibyteEosTokenCriteria(self.generation_config.eos_token_id)
|
722 |
+
stop_criteria = StoppingCriteriaList()
|
723 |
+
if max_length is not None:
|
724 |
+
max_position_embeddings = getattr(self.config, "max_position_embeddings", None)
|
725 |
+
stop_criteria.append(
|
726 |
+
MaxLengthCriteria(
|
727 |
+
max_length=max_length,
|
728 |
+
max_position_embeddings=max_position_embeddings,
|
729 |
+
)
|
730 |
+
)
|
731 |
+
if stopping_criteria is not None and len(stopping_criteria) > 0:
|
732 |
+
stop_criteria.extend(stopping_criteria)
|
733 |
+
|
734 |
+
assert input_ids.shape[0] == 1, "Only support batch size 1 for now"
|
735 |
+
assert attention_mask is None, "Only support attention mask None for now"
|
736 |
+
# Avoid modifying the input_ids in-place
|
737 |
+
input_ids = input_ids.clone()
|
738 |
+
position_ids = torch.arange(0, input_ids.shape[1], device=self.device, dtype=int).reshape(1, -1)
|
739 |
+
|
740 |
+
####################################################
|
741 |
+
# 0. initialize the medusa buffers
|
742 |
+
####################################################
|
743 |
+
if medusa_choices is None:
|
744 |
+
medusa_choices = evabyte_7b_95
|
745 |
+
medusa_buffers = generate_medusa_buffers(
|
746 |
+
medusa_choices, device=self.device
|
747 |
+
)
|
748 |
+
|
749 |
+
past_key_values = EvaStaticCacheForTriton(
|
750 |
+
input_ids.shape[0],
|
751 |
+
self.config.num_attention_heads,
|
752 |
+
# we add 256 to allow tree ids
|
753 |
+
self.config.window_size + 256,
|
754 |
+
self.config.hidden_size // self.config.num_attention_heads,
|
755 |
+
self.config.num_hidden_layers,
|
756 |
+
self.lm_head.weight.dtype,
|
757 |
+
self.lm_head.weight.device,
|
758 |
+
)
|
759 |
+
# prefill to get medusa logits and logits
|
760 |
+
full_logits, past_key_values = self.forward(
|
761 |
+
input_ids,
|
762 |
+
attention_mask=attention_mask,
|
763 |
+
position_ids=position_ids,
|
764 |
+
use_cache=True,
|
765 |
+
past_key_values=past_key_values,
|
766 |
+
return_all_pred_logits=True,
|
767 |
+
multibyte_decoding=False,
|
768 |
+
)
|
769 |
+
# handles an edge case where the prefill length == window_size
|
770 |
+
# we force the previous window to be dumped into RFA chunks
|
771 |
+
past_key_values = self._multi_byte_pred_update_cache_when_prefil_len_eq_window_size(
|
772 |
+
past_key_values
|
773 |
+
)
|
774 |
+
medusa_logits, logits = split_logits(full_logits)
|
775 |
+
|
776 |
+
past_attn_mask = None
|
777 |
+
last_iter_new_tokens = 0
|
778 |
+
max_iters = 32768
|
779 |
+
if return_acc_lengths:
|
780 |
+
acc_lengths = []
|
781 |
+
for _ in range(max_iters):
|
782 |
+
####################################################
|
783 |
+
# 1. generate candidate_ids with topk predictions from Medusa heads
|
784 |
+
####################################################
|
785 |
+
tree_candidate_ids, unflattened_candidate_ids = generate_candidates(
|
786 |
+
medusa_logits,
|
787 |
+
logits,
|
788 |
+
medusa_buffers["tree_indices"],
|
789 |
+
medusa_buffers["retrieve_indices"],
|
790 |
+
temperature=temperature,
|
791 |
+
posterior_alpha=posterior_alpha,
|
792 |
+
posterior_threshold=posterior_threshold,
|
793 |
+
top_p=top_p,
|
794 |
+
sampling=sampling,
|
795 |
+
fast=fast,
|
796 |
+
)
|
797 |
+
|
798 |
+
####################################################
|
799 |
+
# 2. Build the medusa attention mask and position ids
|
800 |
+
####################################################
|
801 |
+
# NOTE: 1 indicates the position is not masked
|
802 |
+
medusa_attn_mask, past_attn_mask = self.multi_byte_pred_update_attn_mask(
|
803 |
+
last_iter_new_tokens,
|
804 |
+
tree_candidate_ids,
|
805 |
+
past_attn_mask,
|
806 |
+
medusa_buffers["medusa_attn_mask"],
|
807 |
+
past_key_values,
|
808 |
+
)
|
809 |
+
medusa_position_ids = medusa_buffers["medusa_position_ids"] + input_ids.shape[1]
|
810 |
+
|
811 |
+
####################################################
|
812 |
+
# 3. tree decoding
|
813 |
+
####################################################
|
814 |
+
tree_full_logits, past_key_values = self.forward(
|
815 |
+
tree_candidate_ids,
|
816 |
+
past_key_values=past_key_values,
|
817 |
+
attention_mask=medusa_attn_mask,
|
818 |
+
position_ids=medusa_position_ids,
|
819 |
+
return_all_pred_logits=True,
|
820 |
+
multibyte_decoding=True,
|
821 |
+
)
|
822 |
+
_medusa_logits, _logits = split_logits(tree_full_logits)
|
823 |
+
medusa_logits = _medusa_logits[..., 0, medusa_buffers["retrieve_indices"], :]
|
824 |
+
logits = _logits[..., 0, medusa_buffers["retrieve_indices"], :]
|
825 |
+
|
826 |
+
####################################################
|
827 |
+
# 4. candidate selection
|
828 |
+
####################################################
|
829 |
+
# if the current iteration, with tree tokens, crosses window
|
830 |
+
# boundaries, trim the condidate_ids to be within the window
|
831 |
+
# so that those exceeded tokens (which will be inaccurate)
|
832 |
+
# will not be considered
|
833 |
+
tree_depth = unflattened_candidate_ids.shape[-1]
|
834 |
+
if tree_depth + past_key_values.get_past_window_pos(0) > self.config.window_size:
|
835 |
+
max_acc_len = self.config.window_size - past_key_values.get_past_window_pos(0)
|
836 |
+
_trimmed_unflattened_candidate_ids = unflattened_candidate_ids[:, :max_acc_len]
|
837 |
+
_trimmed_logits = logits[:, :max_acc_len]
|
838 |
+
else:
|
839 |
+
_trimmed_unflattened_candidate_ids = unflattened_candidate_ids
|
840 |
+
_trimmed_logits = logits
|
841 |
+
best_candidate, accept_length = evaluate_posterior(
|
842 |
+
_trimmed_logits,
|
843 |
+
_trimmed_unflattened_candidate_ids,
|
844 |
+
temperature,
|
845 |
+
posterior_threshold,
|
846 |
+
posterior_alpha,
|
847 |
+
top_p=top_p,
|
848 |
+
sampling=sampling,
|
849 |
+
fast=fast
|
850 |
+
)
|
851 |
+
|
852 |
+
####################################################
|
853 |
+
# 5. update model inputs and caches
|
854 |
+
####################################################
|
855 |
+
input_ids, medusa_logits, logits, last_iter_new_tokens = update_inference_inputs(
|
856 |
+
input_ids,
|
857 |
+
medusa_logits,
|
858 |
+
logits,
|
859 |
+
unflattened_candidate_ids,
|
860 |
+
best_candidate,
|
861 |
+
accept_length,
|
862 |
+
)
|
863 |
+
|
864 |
+
past_key_values = self.multi_byte_pred_update_cache(
|
865 |
+
past_key_values,
|
866 |
+
medusa_buffers["retrieve_indices"],
|
867 |
+
best_candidate,
|
868 |
+
last_iter_new_tokens,
|
869 |
+
)
|
870 |
+
|
871 |
+
if return_acc_lengths:
|
872 |
+
acc_lengths.append(last_iter_new_tokens)
|
873 |
+
if stop_criteria(input_ids, None) or eos_stop_criteria(input_ids, last_iter_new_tokens):
|
874 |
+
if return_acc_lengths:
|
875 |
+
return input_ids, acc_lengths
|
876 |
+
else:
|
877 |
+
return input_ids
|
878 |
+
if return_acc_lengths:
|
879 |
+
return input_ids, acc_lengths
|
880 |
+
else:
|
881 |
+
return input_ids
|