File size: 18,468 Bytes
474addc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
from typing import Dict, Optional, Tuple, List, Any, Union
import torch
from torch import nn
import torch.nn.functional as F
from .eva_agg_kernel import triton_eva_agg_fwd
from .eva_prep_kv_kernel import triton_eva_prep_kv_fwd
try:
import triton
USE_TRITON_IMPL = True
except ImportError:
USE_TRITON_IMPL = False
raise ImportError("Triton is not installed. Please install it by running `pip install triton`.")
def rotate_half(x: torch.Tensor) -> torch.Tensor:
"""
Rotates half the hidden dims (last dim) of the input.
Args:
x: Rotary embedded tensor
Return:
Tensor with half of last dim negated and rotated to the front.
"""
x1, x2 = x.split(x.shape[-1] // 2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor,
position_ids: torch.Tensor) -> torch.Tensor:
"""
Apply rotary embedding (cos, sin) to the query and key tensor on the sequence dimension.
The legends for dimensions are defined as:
num_heads: number of attention heads
current_seq_len: the current batch's sequence length, should be either 1 or max_seq_len
max_seq_len: the static sequence length, different from current_seq_len in cached inference case where it is always
maximum lenghth, e.g. the length of static sequence length of KV cache
Args:
q: Query tensor, of size (batch_size, num_heads, current_seq_len, head_dim)
k: Key tensor, of size (batch_size, num_key_value_heads, current_seq_len, head_dim)
cos: Cosine base of rotary embedding, of size (max_seq_len, head_dim)
sin: Sine base of rotary embedding, of size (max_seq_len, head_dim)
position_ids: The position indices of the tokens corresponding to the query and key tensors. It has a size of
(batch_size, current_seq_len).
Returns:
Embedded query and key tensor of same size as input.
"""
bs, nheads, cur_seq_len, head_dim = q.shape
assert len(
k.shape) == 4, f"k should be of shape (batch_size, num_heads, current_seq_len, head_dim), got {k.shape} instead"
assert k.shape[0] == bs, f"k has a different batch_size {k.shape[0]} compared to q {bs}"
assert list(k.shape[2:]) == [cur_seq_len,
head_dim], f"k has different current_seq_len and/or head_dim compared to q"
assert cos.shape[3] == head_dim, f"cos should have dim of head dim {head_dim}, got {cos.shape[3]} instead"
assert list(position_ids.shape) in [[bs, cur_seq_len], [1, cur_seq_len]],\
f"position_ids should be of shape {[bs, cur_seq_len]} or {[1, cur_seq_len]}, got {position_ids.shape} instead"
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class EvaAttention(nn.Module):
"""
Causal EVA for language modeling.
"""
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.head_dim_scaling = self.head_dim ** -0.5
self.max_position_embeddings = config.max_position_embeddings
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.window_size = config.window_size
self.num_chunks = config.num_chunks
self.chunk_size = config.chunk_size
if self.chunk_size is not None:
assert self.window_size >= self.chunk_size and self.window_size % self.chunk_size == 0
# chunk_size overrides the number of landmarks
self.num_chunks = None
self.chunks_per_window = int(self.window_size // self.chunk_size)
self.adaptive_phi = nn.Parameter(
torch.randn(
1,
self.num_heads,
1,
1,
self.head_dim
).clamp(-1., 1.) * self.head_dim_scaling
)
self.adaptive_mu_k = nn.Parameter(
torch.randn(
1,
self.num_heads,
1,
1,
self.head_dim
).clamp(-1., 1.) * self.head_dim_scaling
)
def _triton_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cos: Optional[torch.Tensor] = None,
sin: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
assert not output_attentions
bsz, q_len, _ = hidden_states.size()
if use_cache and past_key_value is None:
raise ValueError
assert isinstance(attention_mask, tuple)
# infer the model's running mode
is_prefilling = use_cache and past_key_value.get_seq_length(self.layer_idx) == 0
is_decoding = use_cache and past_key_value.get_seq_length(self.layer_idx) > 0
if is_prefilling:
assert len(attention_mask) == 2
window_mask, intra_chunk_mask = attention_mask
chunk_dummpy_mask = None
elif is_decoding:
assert len(attention_mask) == 3
window_mask, intra_chunk_mask, chunk_dummpy_mask = attention_mask
else:
window_mask, intra_chunk_mask = attention_mask
chunk_dummpy_mask = None
############################################
# compute q, k, v from hidden states
############################################
# [b, h, q_len, d]
q = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# [b, h, kv_len, d]
k = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# [b, h, kv_len, d]
v = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
if use_cache:
past_key_value.update_past_len(q.shape[-2], self.layer_idx)
############################################
# apply rotary positional embeddings to q, k
############################################
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
############################################
# update and get cached singleton tokens
# update and cache k and v for calculating chunk-level RFAs
############################################
if use_cache:
s_k, s_v, dump_k, dump_v = past_key_value.update_singletons_and_chunks(
k,
v,
self.layer_idx,
self.window_size,
)
else:
s_k, s_v = k, v
dump_k, dump_v = k, v
if use_cache:
singleton_mask, dump_rf_mask = past_key_value.update_mask(
s_mask=window_mask,
rf_mask=intra_chunk_mask,
layer_idx=self.layer_idx,
window_size=self.window_size,
)
else:
singleton_mask = window_mask
dump_rf_mask = intra_chunk_mask
if dump_k is not None and dump_v is not None:
# 1. in prefilling, the input shape is
# dump_k/dump_v: [b, h, n, d]
# rfa_k/rfa_v: [b, h, n // c, d]
# 2. in decoding, the input shape is
# k/v: [b, h, w, d]
# rfa_k/rfa_v: [b, h, w//c, d]
# 3. in forward inference; the seq_len is already divisible
rfa_k, rfa_v = triton_eva_prep_kv_fwd(
dump_k, dump_v,
self.adaptive_mu_k, self.adaptive_phi,
dump_rf_mask, self.head_dim_scaling, self.chunk_size
)
# rfa_mask = get_rfa_chunk_mask(dump_rf_mask)
if use_cache:
rfa_k, rfa_v = past_key_value.update_chunk_rfas(
rfa_k, rfa_v, self.layer_idx
)
elif use_cache:
# if there are not enough elements within the last chunk,
# we will only use the cached chunk-level RFAs
rfa_k, rfa_v = past_key_value.get_chunk_rfas(self.layer_idx)
else:
rfa_k, rfa_v = None, None
############################################
# compute the full attention output
############################################
if is_prefilling:
# prefilling
# 1. in prefilling, the input shape is
# q: [b, h, n, d]
# k/v: [b, h, n, d]
# rfa_k/rfa_v: [b, h, n // c, d]
attn_output = triton_eva_agg_fwd(
q, s_k, s_v,
rfa_k, rfa_v,
singleton_mask, self.head_dim_scaling, self.window_size, self.chunks_per_window
)
elif is_decoding:
# 2. in decoding, the input shape is
# q: [b, h, 1, d] or [b, h, z, d] (for multi-byte prediction)
# k/v: [b, h, 1 + s, d]
# rfa_k/rfa_v: [b, h, n // c, d]
if rfa_k is not None and rfa_v is not None:
# we only take the chunk-level RFAs not in the current window
seen_seq_len = past_key_value.get_seq_length(self.layer_idx)
if seen_seq_len <= self.window_size:
agg_k = s_k
agg_v = s_v
attn_mask = singleton_mask
else:
# NOTE: we already updated the cache so the length now
# includes the current token
# we subtract 1 from seen_seq_len because we want
# if seen_seq_len = 2048 -> num_windows_seen_so_far = 0
# if seen_seq_len = 4096 -> num_windows_seen_so_far = 1
# if seen_seq_len = 4097 -> num_windows_seen_so_far = 2
# NOTE the cat order should be taken care of;
# should align with the order based on which
# the attention mask is constructed
num_windows_seen_so_far = (seen_seq_len - 1) // self.window_size
agg_k = torch.cat([s_k, rfa_k[..., :num_windows_seen_so_far * self.chunks_per_window, :]], dim=-2)
agg_v = torch.cat([s_v, rfa_v[..., :num_windows_seen_so_far * self.chunks_per_window, :]], dim=-2)
if singleton_mask is not None:
assert chunk_dummpy_mask is not None
attn_mask = torch.cat([singleton_mask, chunk_dummpy_mask], dim=-1)
else:
attn_mask = singleton_mask
else:
agg_k = s_k
agg_v = s_v
attn_mask = singleton_mask
attn_output = F.scaled_dot_product_attention(
q, agg_k, agg_v,
attn_mask=attn_mask,
is_causal=False,
dropout_p=0.0,
scale=self.head_dim_scaling
)
else:
# 3. in single-forward inference
attn_output = triton_eva_agg_fwd(
q, s_k, s_v,
rfa_k, rfa_v,
singleton_mask, self.head_dim_scaling, self.window_size, self.chunks_per_window
)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
attn_weights = None
return attn_output, attn_weights, past_key_value
def _multibyte_decoding_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cos: Optional[torch.Tensor] = None,
sin: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# during multi-byte forwarding, we only read caches and do not update them
assert not output_attentions
bsz, q_len, _ = hidden_states.size()
if use_cache and past_key_value is None:
raise ValueError
assert USE_TRITON_IMPL
assert isinstance(attention_mask, torch.Tensor) and attention_mask.dtype == torch.bool
assert use_cache and past_key_value.get_seq_length(self.layer_idx) > 0
############################################
# compute q, k, v from hidden states
############################################
# [b, h, q_len, d]
q = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# [b, h, kv_len, d]
k = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
# [b, h, kv_len, d]
v = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
############################################
# apply rotary positional embeddings to q, k
############################################
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
############################################
# update and get cached singleton tokens
############################################
input_len = k.shape[-2]
window_pos = past_key_value.past_window_pos[self.layer_idx]
new_window_pos = window_pos + input_len
past_key_value.past_window_k[self.layer_idx][:, :, window_pos : new_window_pos, :] = k
past_key_value.past_window_v[self.layer_idx][:, :, window_pos : new_window_pos, :] = v
s_k = past_key_value.past_window_k[self.layer_idx][:, :, : new_window_pos, :]
s_v = past_key_value.past_window_v[self.layer_idx][:, :, : new_window_pos, :]
rfa_k, rfa_v = past_key_value.get_chunk_rfas(self.layer_idx)
############################################
# compute the full attention output
############################################
# 2. in decoding, the input shape is
# q: [b, h, 1, d] or [b, h, z, d] (for multi-byte prediction)
# k/v: [b, h, 1 + s, d]
# rfa_k/rfa_v: [b, h, n // c, d]
if rfa_k is not None and rfa_v is not None:
# NOTE the cat order should be taken care of;
# should align with the order based on which
# the attention mask is constructed
# agg_k = torch.cat([s_k, rfa_k], dim=-2)
# agg_v = torch.cat([s_v, rfa_v], dim=-2)
agg_k = torch.cat([rfa_k, s_k], dim=-2)
agg_v = torch.cat([rfa_v, s_v], dim=-2)
else:
agg_k = s_k
agg_v = s_v
attn_output = F.scaled_dot_product_attention(
q, agg_k, agg_v,
attn_mask=attention_mask,
is_causal=False,
dropout_p=0.0,
scale=self.head_dim_scaling
)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
attn_weights = None
return attn_output, attn_weights, past_key_value
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cos: Optional[torch.Tensor] = None,
sin: Optional[torch.Tensor] = None,
multibyte_decoding: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
assert not output_attentions
if use_cache and past_key_value is None:
raise ValueError
assert USE_TRITON_IMPL
if use_cache and multibyte_decoding:
return self._multibyte_decoding_forward(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cos=cos,
sin=sin,
)
else:
return self._triton_forward(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cos=cos,
sin=sin,
)
|