EscvNcl's picture
Model save
e98d53a
metadata
base_model: syedmuhammad/ConvNextV2-Diabetec-Retinopathy
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: ConvNext-V2-Retinopathy
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9900990099009901

ConvNext-V2-Retinopathy

This model is a fine-tuned version of syedmuhammad/ConvNextV2-Diabetec-Retinopathy on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0219
  • Accuracy: 0.9901

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.125 1.0 113 0.0339 0.9901
0.2206 2.0 227 0.0139 0.9901
0.1751 3.0 340 0.0114 0.9950
0.0599 4.0 454 0.0277 0.9950
0.1122 5.0 567 0.0328 0.9950
0.093 6.0 681 0.0240 0.9901
0.0673 7.0 794 0.0251 0.9950
0.0718 8.0 908 0.0458 0.9851
0.0632 9.0 1021 0.0477 0.9901
0.0263 10.0 1135 0.0399 0.9950
0.0304 11.0 1248 0.0295 0.9901
0.0892 12.0 1362 0.0330 0.9950
0.0227 13.0 1475 0.0287 0.9901
0.0253 14.0 1589 0.0262 0.9901
0.1242 14.93 1695 0.0219 0.9901

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1