--- base_model: syedmuhammad/ConvNextV2-Diabetec-Retinopathy tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: ConvNext-V2-Retinopathy results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9900990099009901 --- # ConvNext-V2-Retinopathy This model is a fine-tuned version of [syedmuhammad/ConvNextV2-Diabetec-Retinopathy](https://huggingface.co./syedmuhammad/ConvNextV2-Diabetec-Retinopathy) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0219 - Accuracy: 0.9901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.125 | 1.0 | 113 | 0.0339 | 0.9901 | | 0.2206 | 2.0 | 227 | 0.0139 | 0.9901 | | 0.1751 | 3.0 | 340 | 0.0114 | 0.9950 | | 0.0599 | 4.0 | 454 | 0.0277 | 0.9950 | | 0.1122 | 5.0 | 567 | 0.0328 | 0.9950 | | 0.093 | 6.0 | 681 | 0.0240 | 0.9901 | | 0.0673 | 7.0 | 794 | 0.0251 | 0.9950 | | 0.0718 | 8.0 | 908 | 0.0458 | 0.9851 | | 0.0632 | 9.0 | 1021 | 0.0477 | 0.9901 | | 0.0263 | 10.0 | 1135 | 0.0399 | 0.9950 | | 0.0304 | 11.0 | 1248 | 0.0295 | 0.9901 | | 0.0892 | 12.0 | 1362 | 0.0330 | 0.9950 | | 0.0227 | 13.0 | 1475 | 0.0287 | 0.9901 | | 0.0253 | 14.0 | 1589 | 0.0262 | 0.9901 | | 0.1242 | 14.93 | 1695 | 0.0219 | 0.9901 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1