|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
tags: |
|
- merge |
|
base_model: |
|
- teknium/OpenHermes-2.5-Mistral-7B |
|
- Intel/neural-chat-7b-v3-3 |
|
--- |
|
|
|
# Model Description |
|
This is an experiment to compare merging 2 models using DARE TIES versus SLERP 🦙 |
|
|
|
We are mainly interested to compare against [Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp](https://huggingface.co./Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp) |
|
|
|
The 2 models involved in the merge as follows: |
|
1. [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co./teknium/OpenHermes-2.5-Mistral-7B) |
|
2. [Intel/neural-chat-7b-v3-3](https://huggingface.co./Intel/neural-chat-7b-v3-3) |
|
|
|
- base model: [mistralai/Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1) |
|
|
|
The yaml config file for the merge is: |
|
|
|
```yaml |
|
models: |
|
- model: mistralai/Mistral-7B-v0.1 |
|
# no parameters necessary for base model |
|
- model: teknium/OpenHermes-2.5-Mistral-7B |
|
parameters: |
|
weight: 0.5 |
|
density: 0.5 |
|
- model: Intel/neural-chat-7b-v3-3 |
|
parameters: |
|
weight: 0.5 |
|
density: 0.5 |
|
merge_method: dare_ties |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
parameters: |
|
int8_mask: true |
|
dtype: bfloat16 |
|
``` |
|
|
|
# Open LLM Leaderboard |
|
|
|
Note that with more tuning DARE TIES might achieve better results. |
|
|
|
| | DARE TIES | SLERP | |
|
|------------|-----------|-------| |
|
| Average | 70.69 | 71.38 | |
|
| ARC | 67.49 | 68.09 | |
|
| HellaSwag | 85.78 | 86.2 | |
|
| MMLU | 64.1 | 64.26 | |
|
| TruthfulQA | 60.52 | 62.78 | |
|
| Winogrande | 79.01 | 79.16 | |
|
| GSM8K | 67.25 | 67.78 | |
|
|
|
|