File size: 1,566 Bytes
c13f6cc
 
b142b88
 
 
 
d5f004c
 
 
c13f6cc
b142b88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52ffd0a
 
 
ef340a7
 
52ffd0a
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: apache-2.0
language:
- en
tags:
- merge
base_model:
- teknium/OpenHermes-2.5-Mistral-7B
- Intel/neural-chat-7b-v3-3
---

# Model Description
This is an experiment to compare merging 2 models using DARE TIES versus SLERP 🦙

We are mainly interested to compare against [Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp](https://huggingface.co./Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp)

The 2 models involved in the merge as follows:
1. [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co./teknium/OpenHermes-2.5-Mistral-7B)
2. [Intel/neural-chat-7b-v3-3](https://huggingface.co./Intel/neural-chat-7b-v3-3)

- base model: [mistralai/Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1)

The yaml config file for the merge is:

```yaml
models:
  - model: mistralai/Mistral-7B-v0.1
    # no parameters necessary for base model
  - model: teknium/OpenHermes-2.5-Mistral-7B
    parameters:
      weight: 0.5
      density: 0.5
  - model: Intel/neural-chat-7b-v3-3
    parameters:
      weight: 0.5
      density: 0.5
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
  int8_mask: true
dtype: bfloat16
```

# Open LLM Leaderboard

Note that with more tuning DARE TIES might achieve better results.

|            | DARE TIES | SLERP |
|------------|-----------|-------|
| Average    | 70.69     | 71.38 |
| ARC        | 67.49     | 68.09 |
| HellaSwag  | 85.78     | 86.2  |
| MMLU       | 64.1      | 64.26 |
| TruthfulQA | 60.52     | 62.78 |
| Winogrande | 79.01     | 79.16 |
| GSM8K      | 67.25     | 67.78 |