File size: 1,566 Bytes
c13f6cc b142b88 d5f004c c13f6cc b142b88 52ffd0a ef340a7 52ffd0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: apache-2.0
language:
- en
tags:
- merge
base_model:
- teknium/OpenHermes-2.5-Mistral-7B
- Intel/neural-chat-7b-v3-3
---
# Model Description
This is an experiment to compare merging 2 models using DARE TIES versus SLERP 🦙
We are mainly interested to compare against [Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp](https://huggingface.co./Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp)
The 2 models involved in the merge as follows:
1. [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co./teknium/OpenHermes-2.5-Mistral-7B)
2. [Intel/neural-chat-7b-v3-3](https://huggingface.co./Intel/neural-chat-7b-v3-3)
- base model: [mistralai/Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1)
The yaml config file for the merge is:
```yaml
models:
- model: mistralai/Mistral-7B-v0.1
# no parameters necessary for base model
- model: teknium/OpenHermes-2.5-Mistral-7B
parameters:
weight: 0.5
density: 0.5
- model: Intel/neural-chat-7b-v3-3
parameters:
weight: 0.5
density: 0.5
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
```
# Open LLM Leaderboard
Note that with more tuning DARE TIES might achieve better results.
| | DARE TIES | SLERP |
|------------|-----------|-------|
| Average | 70.69 | 71.38 |
| ARC | 67.49 | 68.09 |
| HellaSwag | 85.78 | 86.2 |
| MMLU | 64.1 | 64.26 |
| TruthfulQA | 60.52 | 62.78 |
| Winogrande | 79.01 | 79.16 |
| GSM8K | 67.25 | 67.78 |
|