DouglasBraga's picture
Model save
d36970c verified
|
raw
history blame
3.52 kB
---
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-leukemia.v2.2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-leukemia.v2.2
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5483
- Accuracy: 0.7715
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.2349 | 0.9984 | 312 | 0.5575 | 0.7698 |
| 0.2191 | 2.0 | 625 | 0.5572 | 0.7618 |
| 0.2124 | 2.9984 | 937 | 0.5580 | 0.769 |
| 0.2207 | 4.0 | 1250 | 0.5500 | 0.763 |
| 0.2143 | 4.9984 | 1562 | 0.5575 | 0.7652 |
| 0.2191 | 6.0 | 1875 | 0.5486 | 0.7728 |
| 0.2063 | 6.9984 | 2187 | 0.5594 | 0.7615 |
| 0.207 | 8.0 | 2500 | 0.5405 | 0.7695 |
| 0.2273 | 8.9984 | 2812 | 0.5568 | 0.7672 |
| 0.2136 | 10.0 | 3125 | 0.5483 | 0.7728 |
| 0.2184 | 10.9984 | 3437 | 0.5606 | 0.7665 |
| 0.212 | 12.0 | 3750 | 0.5578 | 0.761 |
| 0.1903 | 12.9984 | 4062 | 0.5371 | 0.769 |
| 0.2487 | 14.0 | 4375 | 0.5582 | 0.7645 |
| 0.2025 | 14.9984 | 4687 | 0.5414 | 0.7778 |
| 0.2207 | 16.0 | 5000 | 0.5376 | 0.7685 |
| 0.2012 | 16.9984 | 5312 | 0.5489 | 0.7702 |
| 0.2198 | 18.0 | 5625 | 0.5560 | 0.7752 |
| 0.2171 | 18.9984 | 5937 | 0.5570 | 0.7725 |
| 0.2116 | 20.0 | 6250 | 0.5622 | 0.7625 |
| 0.2162 | 20.9984 | 6562 | 0.5587 | 0.7668 |
| 0.224 | 22.0 | 6875 | 0.5456 | 0.7712 |
| 0.212 | 22.9984 | 7187 | 0.5647 | 0.7652 |
| 0.2084 | 24.0 | 7500 | 0.5533 | 0.7672 |
| 0.2226 | 24.9984 | 7812 | 0.5434 | 0.7705 |
| 0.2173 | 26.0 | 8125 | 0.5738 | 0.7675 |
| 0.2216 | 26.9984 | 8437 | 0.5557 | 0.7672 |
| 0.1918 | 28.0 | 8750 | 0.5502 | 0.7705 |
| 0.199 | 28.9984 | 9062 | 0.5456 | 0.7675 |
| 0.21 | 29.9520 | 9360 | 0.5483 | 0.7715 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1