DouglasBraga
commited on
Commit
•
d36970c
1
Parent(s):
8e685bf
Model save
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: microsoft/swin-tiny-patch4-window7-224
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: swin-tiny-patch4-window7-224-finetuned-leukemia.v2.2
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# swin-tiny-patch4-window7-224-finetuned-leukemia.v2.2
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.5483
|
22 |
+
- Accuracy: 0.7715
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 5e-05
|
42 |
+
- train_batch_size: 32
|
43 |
+
- eval_batch_size: 32
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 4
|
46 |
+
- total_train_batch_size: 128
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 30
|
51 |
+
- mixed_precision_training: Native AMP
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
56 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
57 |
+
| 0.2349 | 0.9984 | 312 | 0.5575 | 0.7698 |
|
58 |
+
| 0.2191 | 2.0 | 625 | 0.5572 | 0.7618 |
|
59 |
+
| 0.2124 | 2.9984 | 937 | 0.5580 | 0.769 |
|
60 |
+
| 0.2207 | 4.0 | 1250 | 0.5500 | 0.763 |
|
61 |
+
| 0.2143 | 4.9984 | 1562 | 0.5575 | 0.7652 |
|
62 |
+
| 0.2191 | 6.0 | 1875 | 0.5486 | 0.7728 |
|
63 |
+
| 0.2063 | 6.9984 | 2187 | 0.5594 | 0.7615 |
|
64 |
+
| 0.207 | 8.0 | 2500 | 0.5405 | 0.7695 |
|
65 |
+
| 0.2273 | 8.9984 | 2812 | 0.5568 | 0.7672 |
|
66 |
+
| 0.2136 | 10.0 | 3125 | 0.5483 | 0.7728 |
|
67 |
+
| 0.2184 | 10.9984 | 3437 | 0.5606 | 0.7665 |
|
68 |
+
| 0.212 | 12.0 | 3750 | 0.5578 | 0.761 |
|
69 |
+
| 0.1903 | 12.9984 | 4062 | 0.5371 | 0.769 |
|
70 |
+
| 0.2487 | 14.0 | 4375 | 0.5582 | 0.7645 |
|
71 |
+
| 0.2025 | 14.9984 | 4687 | 0.5414 | 0.7778 |
|
72 |
+
| 0.2207 | 16.0 | 5000 | 0.5376 | 0.7685 |
|
73 |
+
| 0.2012 | 16.9984 | 5312 | 0.5489 | 0.7702 |
|
74 |
+
| 0.2198 | 18.0 | 5625 | 0.5560 | 0.7752 |
|
75 |
+
| 0.2171 | 18.9984 | 5937 | 0.5570 | 0.7725 |
|
76 |
+
| 0.2116 | 20.0 | 6250 | 0.5622 | 0.7625 |
|
77 |
+
| 0.2162 | 20.9984 | 6562 | 0.5587 | 0.7668 |
|
78 |
+
| 0.224 | 22.0 | 6875 | 0.5456 | 0.7712 |
|
79 |
+
| 0.212 | 22.9984 | 7187 | 0.5647 | 0.7652 |
|
80 |
+
| 0.2084 | 24.0 | 7500 | 0.5533 | 0.7672 |
|
81 |
+
| 0.2226 | 24.9984 | 7812 | 0.5434 | 0.7705 |
|
82 |
+
| 0.2173 | 26.0 | 8125 | 0.5738 | 0.7675 |
|
83 |
+
| 0.2216 | 26.9984 | 8437 | 0.5557 | 0.7672 |
|
84 |
+
| 0.1918 | 28.0 | 8750 | 0.5502 | 0.7705 |
|
85 |
+
| 0.199 | 28.9984 | 9062 | 0.5456 | 0.7675 |
|
86 |
+
| 0.21 | 29.9520 | 9360 | 0.5483 | 0.7715 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.45.2
|
92 |
+
- Pytorch 2.4.1+cu121
|
93 |
+
- Datasets 3.0.1
|
94 |
+
- Tokenizers 0.20.1
|