DouglasBraga commited on
Commit
d36970c
1 Parent(s): 8e685bf

Model save

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: microsoft/swin-tiny-patch4-window7-224
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: swin-tiny-patch4-window7-224-finetuned-leukemia.v2.2
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # swin-tiny-patch4-window7-224-finetuned-leukemia.v2.2
18
+
19
+ This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.5483
22
+ - Accuracy: 0.7715
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 32
43
+ - eval_batch_size: 32
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 4
46
+ - total_train_batch_size: 128
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_ratio: 0.1
50
+ - num_epochs: 30
51
+ - mixed_precision_training: Native AMP
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
56
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|
57
+ | 0.2349 | 0.9984 | 312 | 0.5575 | 0.7698 |
58
+ | 0.2191 | 2.0 | 625 | 0.5572 | 0.7618 |
59
+ | 0.2124 | 2.9984 | 937 | 0.5580 | 0.769 |
60
+ | 0.2207 | 4.0 | 1250 | 0.5500 | 0.763 |
61
+ | 0.2143 | 4.9984 | 1562 | 0.5575 | 0.7652 |
62
+ | 0.2191 | 6.0 | 1875 | 0.5486 | 0.7728 |
63
+ | 0.2063 | 6.9984 | 2187 | 0.5594 | 0.7615 |
64
+ | 0.207 | 8.0 | 2500 | 0.5405 | 0.7695 |
65
+ | 0.2273 | 8.9984 | 2812 | 0.5568 | 0.7672 |
66
+ | 0.2136 | 10.0 | 3125 | 0.5483 | 0.7728 |
67
+ | 0.2184 | 10.9984 | 3437 | 0.5606 | 0.7665 |
68
+ | 0.212 | 12.0 | 3750 | 0.5578 | 0.761 |
69
+ | 0.1903 | 12.9984 | 4062 | 0.5371 | 0.769 |
70
+ | 0.2487 | 14.0 | 4375 | 0.5582 | 0.7645 |
71
+ | 0.2025 | 14.9984 | 4687 | 0.5414 | 0.7778 |
72
+ | 0.2207 | 16.0 | 5000 | 0.5376 | 0.7685 |
73
+ | 0.2012 | 16.9984 | 5312 | 0.5489 | 0.7702 |
74
+ | 0.2198 | 18.0 | 5625 | 0.5560 | 0.7752 |
75
+ | 0.2171 | 18.9984 | 5937 | 0.5570 | 0.7725 |
76
+ | 0.2116 | 20.0 | 6250 | 0.5622 | 0.7625 |
77
+ | 0.2162 | 20.9984 | 6562 | 0.5587 | 0.7668 |
78
+ | 0.224 | 22.0 | 6875 | 0.5456 | 0.7712 |
79
+ | 0.212 | 22.9984 | 7187 | 0.5647 | 0.7652 |
80
+ | 0.2084 | 24.0 | 7500 | 0.5533 | 0.7672 |
81
+ | 0.2226 | 24.9984 | 7812 | 0.5434 | 0.7705 |
82
+ | 0.2173 | 26.0 | 8125 | 0.5738 | 0.7675 |
83
+ | 0.2216 | 26.9984 | 8437 | 0.5557 | 0.7672 |
84
+ | 0.1918 | 28.0 | 8750 | 0.5502 | 0.7705 |
85
+ | 0.199 | 28.9984 | 9062 | 0.5456 | 0.7675 |
86
+ | 0.21 | 29.9520 | 9360 | 0.5483 | 0.7715 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.45.2
92
+ - Pytorch 2.4.1+cu121
93
+ - Datasets 3.0.1
94
+ - Tokenizers 0.20.1