Dogebooch's picture
update model card README.md
566d0ca
metadata
tags:
  - generated_from_trainer
datasets:
  - ncbi_disease
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: BioBERT-mnli-snli-scinli-scitail-mednli-stsb-ncbi
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: ncbi_disease
          type: ncbi_disease
          config: ncbi_disease
          split: test
          args: ncbi_disease
        metrics:
          - name: Precision
            type: precision
            value: 0.8604187437686939
          - name: Recall
            type: recall
            value: 0.8989583333333333
          - name: F1
            type: f1
            value: 0.879266428935303
          - name: Accuracy
            type: accuracy
            value: 0.9870188186308527

BioBERT-mnli-snli-scinli-scitail-mednli-stsb-ncbi

This model is a fine-tuned version of pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb on the ncbi_disease dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0814
  • Precision: 0.8604
  • Recall: 0.8990
  • F1: 0.8793
  • Accuracy: 0.9870

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 340 0.0481 0.8308 0.8438 0.8372 0.9840
0.0715 2.0 680 0.0497 0.8337 0.8771 0.8548 0.9857
0.0152 3.0 1020 0.0588 0.8596 0.8802 0.8698 0.9858
0.0152 4.0 1360 0.0589 0.8589 0.8875 0.8730 0.9873
0.0059 5.0 1700 0.0693 0.8412 0.8938 0.8667 0.9852
0.003 6.0 2040 0.0770 0.8701 0.9 0.8848 0.9863
0.003 7.0 2380 0.0787 0.861 0.8969 0.8786 0.9863
0.0014 8.0 2720 0.0760 0.8655 0.8979 0.8814 0.9872
0.0007 9.0 3060 0.0817 0.8589 0.8938 0.8760 0.9865
0.0007 10.0 3400 0.0814 0.8604 0.8990 0.8793 0.9870

Framework versions

  • Transformers 4.29.1
  • Pytorch 2.0.1+cpu
  • Datasets 2.12.0
  • Tokenizers 0.13.3