update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- ncbi_disease
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: BioBERT-mnli-snli-scinli-scitail-mednli-stsb-ncbi
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Token Classification
|
16 |
+
type: token-classification
|
17 |
+
dataset:
|
18 |
+
name: ncbi_disease
|
19 |
+
type: ncbi_disease
|
20 |
+
config: ncbi_disease
|
21 |
+
split: test
|
22 |
+
args: ncbi_disease
|
23 |
+
metrics:
|
24 |
+
- name: Precision
|
25 |
+
type: precision
|
26 |
+
value: 0.8604187437686939
|
27 |
+
- name: Recall
|
28 |
+
type: recall
|
29 |
+
value: 0.8989583333333333
|
30 |
+
- name: F1
|
31 |
+
type: f1
|
32 |
+
value: 0.879266428935303
|
33 |
+
- name: Accuracy
|
34 |
+
type: accuracy
|
35 |
+
value: 0.9870188186308527
|
36 |
+
---
|
37 |
+
|
38 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
39 |
+
should probably proofread and complete it, then remove this comment. -->
|
40 |
+
|
41 |
+
# BioBERT-mnli-snli-scinli-scitail-mednli-stsb-ncbi
|
42 |
+
|
43 |
+
This model is a fine-tuned version of [pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb](https://huggingface.co/pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb) on the ncbi_disease dataset.
|
44 |
+
It achieves the following results on the evaluation set:
|
45 |
+
- Loss: 0.0814
|
46 |
+
- Precision: 0.8604
|
47 |
+
- Recall: 0.8990
|
48 |
+
- F1: 0.8793
|
49 |
+
- Accuracy: 0.9870
|
50 |
+
|
51 |
+
## Model description
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Intended uses & limitations
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Training and evaluation data
|
60 |
+
|
61 |
+
More information needed
|
62 |
+
|
63 |
+
## Training procedure
|
64 |
+
|
65 |
+
### Training hyperparameters
|
66 |
+
|
67 |
+
The following hyperparameters were used during training:
|
68 |
+
- learning_rate: 2e-05
|
69 |
+
- train_batch_size: 16
|
70 |
+
- eval_batch_size: 16
|
71 |
+
- seed: 42
|
72 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
+
- lr_scheduler_type: linear
|
74 |
+
- num_epochs: 10
|
75 |
+
|
76 |
+
### Training results
|
77 |
+
|
78 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
79 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
80 |
+
| No log | 1.0 | 340 | 0.0481 | 0.8308 | 0.8438 | 0.8372 | 0.9840 |
|
81 |
+
| 0.0715 | 2.0 | 680 | 0.0497 | 0.8337 | 0.8771 | 0.8548 | 0.9857 |
|
82 |
+
| 0.0152 | 3.0 | 1020 | 0.0588 | 0.8596 | 0.8802 | 0.8698 | 0.9858 |
|
83 |
+
| 0.0152 | 4.0 | 1360 | 0.0589 | 0.8589 | 0.8875 | 0.8730 | 0.9873 |
|
84 |
+
| 0.0059 | 5.0 | 1700 | 0.0693 | 0.8412 | 0.8938 | 0.8667 | 0.9852 |
|
85 |
+
| 0.003 | 6.0 | 2040 | 0.0770 | 0.8701 | 0.9 | 0.8848 | 0.9863 |
|
86 |
+
| 0.003 | 7.0 | 2380 | 0.0787 | 0.861 | 0.8969 | 0.8786 | 0.9863 |
|
87 |
+
| 0.0014 | 8.0 | 2720 | 0.0760 | 0.8655 | 0.8979 | 0.8814 | 0.9872 |
|
88 |
+
| 0.0007 | 9.0 | 3060 | 0.0817 | 0.8589 | 0.8938 | 0.8760 | 0.9865 |
|
89 |
+
| 0.0007 | 10.0 | 3400 | 0.0814 | 0.8604 | 0.8990 | 0.8793 | 0.9870 |
|
90 |
+
|
91 |
+
|
92 |
+
### Framework versions
|
93 |
+
|
94 |
+
- Transformers 4.29.1
|
95 |
+
- Pytorch 2.0.1+cpu
|
96 |
+
- Datasets 2.12.0
|
97 |
+
- Tokenizers 0.13.3
|