metadata
license: mit
datasets:
- codeparrot/codeparrot-clean
tags:
- text-generation
- code-generation
- gpt2-large
widget:
- text: 'def hello_world():'
example_title: Example 1
- text: 'def get_files_size(filename):'
example_title: Example 2
inference:
parameters:
max_new_tokens: 30
temperature: 0.5
num_return_sequences: 1
Code Generation using GPT2-Large
This is a GPT2-large model that's further fine-tuned on the Codeparrot clean dataset with a custom metric focused on code generation.
I've further trained the tokenizer initialized from the GPT2-large on the same dataset to better align the tokenization for generating code.
Model description
This Model has the same architecture and Parameters as the GPT2-large model. Please refer to this link to know more about the model details.
Intended Use & Limitations
This model is intended to generate code for the required function based on a small description of the output required.
Note: The model is primarily trained with an objective of code generation.
Usage
You can use this model directly to get the summaries:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load Code Generator LLM and tokenizer from checkpoint
tokenizer = AutoTokenizer.from_pretrained("DeathReaper0965/gpt2_large_code_generator")
model = AutoModelForCausalLM.from_pretrained("DeathReaper0965/gpt2_large_code_generator")
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
inputs = tokenizer("def hello_world():", return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
outputs = model.generate(**inputs,
max_new_tokens= 30,
temperature= 0.5,
num_return_sequences= 1)
print(tokenizer.batch_decode(outputs)[0])
###########OUTPUT###########
def hello_world():
return "Hello World!"
@app.route("/hello_world")
def hello_world():
return "Hello World!"
Designed and Developed with ♥ by Praneet | LinkedIn | GitHub