Code Generation using GPT2-Large
This is a GPT2-large model that's further fine-tuned on the Codeparrot dataset with a custom metric focused on code generation.
The Tokenizer is initialized from the GPT2-large and further trained on the same dataset to better align the tokenization for generating code.
Model description
This Model has the same architecture and Parameters as the GPT2-large model. Please refer to this link to know more about the model details.
Intended Use & Limitations
This model is intended to generate code for the required function based on a small description of the output required.
Note: The model is primarily trained with an objective of code generation.
Usage
You can use this model directly to get the summaries:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load Code Generator LLM and tokenizer from checkpoint
tokenizer = AutoTokenizer.from_pretrained("DeathReaper0965/gpt2_large_code_generator")
model = AutoModelForCausalLM.from_pretrained("DeathReaper0965/gpt2_large_code_generator")
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
inputs = tokenizer("def hello_world():", return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
outputs = model.generate(**inputs,
max_new_tokens= 30,
num_return_sequences= 1)
print(tokenizer.batch_decode(outputs)[0])
###########OUTPUT###########
def hello_world():
return "Hello World!"
@app.route("/hello_world")
def hello_world():
return "Hello World!"
Designed and Developed with ♥ by Praneet | LinkedIn | GitHub
- Downloads last month
- 129
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.