|
--- |
|
language: |
|
- zh |
|
license: other |
|
library_name: peft |
|
tags: |
|
- trl |
|
- sft |
|
- nycu-112-2-deeplearning-hw2 |
|
- generated_from_trainer |
|
base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
datasets: |
|
- DandinPower/ZH-Reading-Comprehension-Llama-Instruct |
|
model-index: |
|
- name: llama_3_8b_lora_completion_only |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llama_3_8b_lora_completion_only |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3-8B-Instruct) on the DandinPower/ZH-Reading-Comprehension-Llama-Instruct dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0924 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 2 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 700 |
|
- num_epochs: 5.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.105 | 0.3690 | 250 | 0.0762 | |
|
| 0.0716 | 0.7380 | 500 | 0.0897 | |
|
| 0.0652 | 1.1070 | 750 | 0.0832 | |
|
| 0.061 | 1.4760 | 1000 | 0.0640 | |
|
| 0.0373 | 1.8450 | 1250 | 0.0813 | |
|
| 0.0344 | 2.2140 | 1500 | 0.0686 | |
|
| 0.0207 | 2.5830 | 1750 | 0.0662 | |
|
| 0.0351 | 2.9520 | 2000 | 0.0669 | |
|
| 0.0028 | 3.3210 | 2250 | 0.0996 | |
|
| 0.0101 | 3.6900 | 2500 | 0.0718 | |
|
| 0.0044 | 4.0590 | 2750 | 0.0825 | |
|
| 0.0123 | 4.4280 | 3000 | 0.0969 | |
|
| 0.0031 | 4.7970 | 3250 | 0.0924 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.0 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |