DandinPower's picture
End of training
f95c055 verified
metadata
language:
  - zh
license: other
library_name: peft
tags:
  - trl
  - sft
  - nycu-112-2-deeplearning-hw2
  - generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B-Instruct
datasets:
  - DandinPower/ZH-Reading-Comprehension-Llama-Instruct
model-index:
  - name: llama_3_8b_lora_completion_only
    results: []

llama_3_8b_lora_completion_only

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the DandinPower/ZH-Reading-Comprehension-Llama-Instruct dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0924

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • total_eval_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 700
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss
0.105 0.3690 250 0.0762
0.0716 0.7380 500 0.0897
0.0652 1.1070 750 0.0832
0.061 1.4760 1000 0.0640
0.0373 1.8450 1250 0.0813
0.0344 2.2140 1500 0.0686
0.0207 2.5830 1750 0.0662
0.0351 2.9520 2000 0.0669
0.0028 3.3210 2250 0.0996
0.0101 3.6900 2500 0.0718
0.0044 4.0590 2750 0.0825
0.0123 4.4280 3000 0.0969
0.0031 4.7970 3250 0.0924

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1