Dagobert42's picture
Push ../models/distilbert-base-uncased/biored-augmentations-only/ trained on biored-original_splits.pt (200 samples)
dbdb9ef verified
|
raw
history blame
2.1 kB
---
language:
- en
license: mit
base_model: distilbert-base-uncased
tags:
- low-resource NER
- token_classification
- biomedicine
- medical NER
- generated_from_trainer
datasets:
- medicine
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: Dagobert42/distilbert-base-uncased-biored-augmented
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Dagobert42/distilbert-base-uncased-biored-augmented
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the bigbio/biored dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5163
- Accuracy: 0.8153
- Precision: 0.6449
- Recall: 0.5356
- F1: 0.5682
- Weighted F1: 0.8067
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Weighted F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:|
| No log | 1.0 | 25 | 0.5489 | 0.8057 | 0.7074 | 0.5047 | 0.5477 | 0.7897 |
| No log | 2.0 | 50 | 0.5456 | 0.811 | 0.6724 | 0.5482 | 0.5813 | 0.8018 |
| No log | 3.0 | 75 | 0.5504 | 0.8148 | 0.6741 | 0.5468 | 0.5885 | 0.8029 |
| No log | 4.0 | 100 | 0.5482 | 0.8123 | 0.644 | 0.5883 | 0.6115 | 0.8073 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.15.0