Dagobert42's picture
Push ../models/distilbert-base-uncased/biored-augmentations-only/ trained on biored-original_splits.pt (200 samples)
dbdb9ef verified
|
raw
history blame
2.1 kB
metadata
language:
  - en
license: mit
base_model: distilbert-base-uncased
tags:
  - low-resource NER
  - token_classification
  - biomedicine
  - medical NER
  - generated_from_trainer
datasets:
  - medicine
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: Dagobert42/distilbert-base-uncased-biored-augmented
    results: []

Dagobert42/distilbert-base-uncased-biored-augmented

This model is a fine-tuned version of distilbert-base-uncased on the bigbio/biored dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5163
  • Accuracy: 0.8153
  • Precision: 0.6449
  • Recall: 0.5356
  • F1: 0.5682
  • Weighted F1: 0.8067

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Weighted F1
No log 1.0 25 0.5489 0.8057 0.7074 0.5047 0.5477 0.7897
No log 2.0 50 0.5456 0.811 0.6724 0.5482 0.5813 0.8018
No log 3.0 75 0.5504 0.8148 0.6741 0.5468 0.5885 0.8029
No log 4.0 100 0.5482 0.8123 0.644 0.5883 0.6115 0.8073

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.15.0