zhuqi's picture
Update README.md
c9d42c9
metadata
language:
  - zh
license: apache-2.0
tags:
  - mt5-small
  - text2text-generation
  - dialog state tracking
  - conversational system
  - task-oriented dialog
datasets:
  - ConvLab/crosswoz
metrics:
  - Joint Goal Accuracy
  - Slot F1
model-index:
  - name: mt5-small-dst-crosswoz
    results:
      - task:
          type: text2text-generation
          name: dialog state tracking
        dataset:
          type: ConvLab/crosswoz
          name: CrossWOZ
          split: test
          revision: 4a3e56082543ed9eecb9c76ef5eadc1aa0cc5ca0
        metrics:
          - type: Joint Goal Accuracy
            value: 62.5
            name: JGA
          - type: Slot F1
            value: 90.4
            name: Slot F1
widget:
  - text: |-
      user: 你好,给我推荐一个评分是5分,价格在100-200元的酒店。
      system: 推荐您去北京布提克精品酒店。
      user: 北京布提克精品酒店酒店是什么类型,有健身房吗?
      system: 北京布提克精品酒店评分是4.8分,是高档型酒店,没有健身房。
      user: 给我推荐一个评分在4.5分以上,游玩时间在2小时 - 3小时的免费景点。
  - text: |-
      user: 您好,请帮我推荐个4.5分以上的景点游玩呗,最好把周边有什么酒店告诉我一下。
      system: 那我推荐您故宫,周边的酒店有北京天伦王朝酒店, 北京首都宾馆, 北京贵都大酒店。
      user: 那请在故宫周边的酒店里,帮我找个评分在4.5分以上的店。
      system: 北京贵都大酒店符合您的要求。
      user: 请帮我呼叫一辆从故宫到北京贵都大酒店的出租车,告诉我车型和车牌号。
inference:
  parameters:
    max_length: 100

mt5-small-dst-crosswoz

This model is a fine-tuned version of mt5-small on CrossWOZ.

Refer to ConvLab-3 for model description and usage.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adafactor
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1