--- language: - zh license: apache-2.0 tags: - mt5-small - text2text-generation - dialog state tracking - conversational system - task-oriented dialog datasets: - ConvLab/crosswoz metrics: - Joint Goal Accuracy - Slot F1 model-index: - name: mt5-small-dst-crosswoz results: - task: type: text2text-generation name: dialog state tracking dataset: type: ConvLab/crosswoz name: CrossWOZ split: test revision: 4a3e56082543ed9eecb9c76ef5eadc1aa0cc5ca0 metrics: - type: Joint Goal Accuracy value: 62.5 name: JGA - type: Slot F1 value: 90.4 name: Slot F1 widget: - text: "user: 你好,给我推荐一个评分是5分,价格在100-200元的酒店。\nsystem: 推荐您去北京布提克精品酒店。\nuser: 北京布提克精品酒店酒店是什么类型,有健身房吗?\nsystem: 北京布提克精品酒店评分是4.8分,是高档型酒店,没有健身房。\nuser: 给我推荐一个评分在4.5分以上,游玩时间在2小时 - 3小时的免费景点。" - text: "user: 您好,请帮我推荐个4.5分以上的景点游玩呗,最好把周边有什么酒店告诉我一下。\nsystem: 那我推荐您故宫,周边的酒店有北京天伦王朝酒店, 北京首都宾馆, 北京贵都大酒店。\nuser: 那请在故宫周边的酒店里,帮我找个评分在4.5分以上的店。\nsystem: 北京贵都大酒店符合您的要求。\nuser: 请帮我呼叫一辆从故宫到北京贵都大酒店的出租车,告诉我车型和车牌号。" inference: parameters: max_length: 100 --- # mt5-small-dst-crosswoz This model is a fine-tuned version of [mt5-small](https://huggingface.co./mt5-small) on [CrossWOZ](https://huggingface.co./datasets/ConvLab/crosswoz). Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1