vit-cxr4 / README.md
Coelhomatias's picture
End of training
7b7fa03 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: vit-cxr4
    results: []

vit-cxr4

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3774
  • Precision: 0.8587
  • Recall: 0.9317
  • F1: 0.8937
  • Accuracy: 0.8924

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 96
  • eval_batch_size: 64
  • seed: 17
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3151 0.31 100 0.3317 0.8152 0.9143 0.8619 0.8552
0.319 0.63 200 0.3048 0.8670 0.8514 0.8591 0.8620
0.2926 0.94 300 0.2867 0.8580 0.8662 0.8621 0.8631
0.1884 1.25 400 0.2635 0.8468 0.9381 0.8901 0.8856
0.234 1.57 500 0.2639 0.8232 0.9677 0.8896 0.8814
0.2349 1.88 600 0.2478 0.8530 0.9328 0.8911 0.8874
0.1476 2.19 700 0.2560 0.8584 0.9297 0.8926 0.8895
0.1289 2.51 800 0.2698 0.8809 0.8916 0.8862 0.8869
0.1579 2.82 900 0.2614 0.8879 0.8715 0.8796 0.8822
0.0745 3.13 1000 0.2783 0.8854 0.8905 0.8880 0.8889
0.0697 3.45 1100 0.2844 0.8893 0.8879 0.8886 0.8900
0.0602 3.76 1200 0.3213 0.8797 0.8932 0.8864 0.8869
0.0246 4.08 1300 0.3393 0.8753 0.9096 0.8921 0.8913
0.0301 4.39 1400 0.3593 0.8644 0.9307 0.8964 0.8937
0.0348 4.7 1500 0.3804 0.8653 0.9344 0.8986 0.8957
0.011 5.02 1600 0.3897 0.8622 0.9365 0.8978 0.8947
0.0077 5.33 1700 0.4088 0.8754 0.9180 0.8962 0.8950
0.0064 5.64 1800 0.4281 0.8780 0.9170 0.8971 0.8960
0.0031 5.96 1900 0.4289 0.8736 0.9207 0.8965 0.8950

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0