--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: vit-cxr4 results: [] --- # vit-cxr4 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3774 - Precision: 0.8587 - Recall: 0.9317 - F1: 0.8937 - Accuracy: 0.8924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 96 - eval_batch_size: 64 - seed: 17 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3151 | 0.31 | 100 | 0.3317 | 0.8152 | 0.9143 | 0.8619 | 0.8552 | | 0.319 | 0.63 | 200 | 0.3048 | 0.8670 | 0.8514 | 0.8591 | 0.8620 | | 0.2926 | 0.94 | 300 | 0.2867 | 0.8580 | 0.8662 | 0.8621 | 0.8631 | | 0.1884 | 1.25 | 400 | 0.2635 | 0.8468 | 0.9381 | 0.8901 | 0.8856 | | 0.234 | 1.57 | 500 | 0.2639 | 0.8232 | 0.9677 | 0.8896 | 0.8814 | | 0.2349 | 1.88 | 600 | 0.2478 | 0.8530 | 0.9328 | 0.8911 | 0.8874 | | 0.1476 | 2.19 | 700 | 0.2560 | 0.8584 | 0.9297 | 0.8926 | 0.8895 | | 0.1289 | 2.51 | 800 | 0.2698 | 0.8809 | 0.8916 | 0.8862 | 0.8869 | | 0.1579 | 2.82 | 900 | 0.2614 | 0.8879 | 0.8715 | 0.8796 | 0.8822 | | 0.0745 | 3.13 | 1000 | 0.2783 | 0.8854 | 0.8905 | 0.8880 | 0.8889 | | 0.0697 | 3.45 | 1100 | 0.2844 | 0.8893 | 0.8879 | 0.8886 | 0.8900 | | 0.0602 | 3.76 | 1200 | 0.3213 | 0.8797 | 0.8932 | 0.8864 | 0.8869 | | 0.0246 | 4.08 | 1300 | 0.3393 | 0.8753 | 0.9096 | 0.8921 | 0.8913 | | 0.0301 | 4.39 | 1400 | 0.3593 | 0.8644 | 0.9307 | 0.8964 | 0.8937 | | 0.0348 | 4.7 | 1500 | 0.3804 | 0.8653 | 0.9344 | 0.8986 | 0.8957 | | 0.011 | 5.02 | 1600 | 0.3897 | 0.8622 | 0.9365 | 0.8978 | 0.8947 | | 0.0077 | 5.33 | 1700 | 0.4088 | 0.8754 | 0.9180 | 0.8962 | 0.8950 | | 0.0064 | 5.64 | 1800 | 0.4281 | 0.8780 | 0.9170 | 0.8971 | 0.8960 | | 0.0031 | 5.96 | 1900 | 0.4289 | 0.8736 | 0.9207 | 0.8965 | 0.8950 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0