CluelessNovice's picture
Upload adapter model
ecce4a2
|
raw
history blame
972 Bytes
metadata
base_model: westlake-repl/SaProt_35M_AF2
library_name: peft

Model Card for Model-Subcellular_Localization-35M

This model is used for the Subcellular Localization Classification Task. It takes a protein sequence as input and outputs which of the 10 categories the protein belongs to.

Task type

Protein-level Classification

Model input type

SA Sequence

Label meanings

0: Nucleus

1: Cytoplasm

2: Extracellular

3: Mitochondrion

4: Cell.membrane

5: Endoplasmic.reticulum

6: Plastid

7: Golgi.apparatus

8: Lysosome/Vacuole

9: Peroxisome

LoRA config

  • r: 8
  • lora_dropout: 0.0
  • lora_alpha: 16
  • target_modules: ['query', 'intermediate.dense', 'key', 'value', 'output.dense']
  • modules_to_save: ['classifier']

Training config

  • optimizer:
    • class: AdamW
    • betas: (0.9, 0.98)
    • weight_decay: 0.01
  • learning rate: 0.001
  • epoch: 1
  • batch size: 2
  • precision: 16-mixed