whisper-base-rus-8 / README.md
CheeLi03's picture
Upload tokenizer
8032026 verified
metadata
base_model: openai/whisper-base
datasets:
  - fleurs
language:
  - ru
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Base Russian 8000 - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: ru_ru
          split: None
          args: 'config: ru split: test'
        metrics:
          - type: wer
            value: 25.55451630144308
            name: Wer

Whisper Base Russian 8000 - Chee Li

This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4957
  • Wer: 25.5545

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 850
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0635 5.4645 1000 0.3433 22.5882
0.0051 10.9290 2000 0.3879 23.0492
0.0019 16.3934 3000 0.4186 23.8976
0.0011 21.8579 4000 0.4422 24.4522
0.0007 27.3224 5000 0.4613 25.0
0.0005 32.7869 6000 0.4781 25.3140
0.0004 38.2514 7000 0.4907 25.4209
0.0003 43.7158 8000 0.4957 25.5545

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1