Edit model card

Whisper Base Russian 8000 - Chee Li

This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4957
  • Wer: 25.5545

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 850
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0635 5.4645 1000 0.3433 22.5882
0.0051 10.9290 2000 0.3879 23.0492
0.0019 16.3934 3000 0.4186 23.8976
0.0011 21.8579 4000 0.4422 24.4522
0.0007 27.3224 5000 0.4613 25.0
0.0005 32.7869 6000 0.4781 25.3140
0.0004 38.2514 7000 0.4907 25.4209
0.0003 43.7158 8000 0.4957 25.5545

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
12
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for CheeLi03/whisper-base-rus-8

Finetuned
(337)
this model

Evaluation results