|
--- |
|
library_name: transformers |
|
language: |
|
- ar |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper tiny AR - BH |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper tiny AR - BH |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the quran-ayat-speech-to-text dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0171 |
|
- Wer: 0.1132 |
|
- Cer: 0.0409 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 15 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 0.0145 | 1.0 | 219 | 0.0160 | 0.1213 | 0.0455 | |
|
| 0.0115 | 2.0 | 438 | 0.0123 | 0.1267 | 0.0469 | |
|
| 0.0082 | 3.0 | 657 | 0.0112 | 0.1157 | 0.0399 | |
|
| 0.0061 | 4.0 | 876 | 0.0111 | 0.1173 | 0.0406 | |
|
| 0.0056 | 5.0 | 1095 | 0.0116 | 0.1137 | 0.0389 | |
|
| 0.0062 | 6.0 | 1314 | 0.0122 | 0.1117 | 0.0367 | |
|
| 0.0021 | 7.0 | 1533 | 0.0129 | 0.1166 | 0.0396 | |
|
| 0.0028 | 8.0 | 1752 | 0.0136 | 0.1167 | 0.0385 | |
|
| 0.0017 | 9.0 | 1971 | 0.0141 | 0.1140 | 0.0370 | |
|
| 0.0017 | 10.0 | 2190 | 0.0148 | 0.1119 | 0.0381 | |
|
| 0.0012 | 11.0 | 2409 | 0.0152 | 0.1117 | 0.0366 | |
|
| 0.0013 | 12.0 | 2628 | 0.0156 | 0.1122 | 0.0373 | |
|
| 0.0008 | 13.0 | 2847 | 0.0159 | 0.1120 | 0.0377 | |
|
| 0.0011 | 14.0 | 3066 | 0.0171 | 0.1128 | 0.0408 | |
|
| 0.0008 | 15.0 | 3285 | 0.0161 | 0.1108 | 0.0369 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.19.1 |
|
|