Baselhany's picture
Training finished
53746d9 verified
|
raw
history blame
2.56 kB
metadata
library_name: transformers
language:
  - ar
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: Whisper tiny AR - BH
    results: []

Whisper tiny AR - BH

This model is a fine-tuned version of openai/whisper-tiny on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0171
  • Wer: 0.1132
  • Cer: 0.0409

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.0145 1.0 219 0.0160 0.1213 0.0455
0.0115 2.0 438 0.0123 0.1267 0.0469
0.0082 3.0 657 0.0112 0.1157 0.0399
0.0061 4.0 876 0.0111 0.1173 0.0406
0.0056 5.0 1095 0.0116 0.1137 0.0389
0.0062 6.0 1314 0.0122 0.1117 0.0367
0.0021 7.0 1533 0.0129 0.1166 0.0396
0.0028 8.0 1752 0.0136 0.1167 0.0385
0.0017 9.0 1971 0.0141 0.1140 0.0370
0.0017 10.0 2190 0.0148 0.1119 0.0381
0.0012 11.0 2409 0.0152 0.1117 0.0366
0.0013 12.0 2628 0.0156 0.1122 0.0373
0.0008 13.0 2847 0.0159 0.1120 0.0377
0.0011 14.0 3066 0.0171 0.1128 0.0408
0.0008 15.0 3285 0.0161 0.1108 0.0369

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1