|
---
|
|
library_name: sentence-transformers
|
|
pipeline_tag: sentence-similarity
|
|
tags:
|
|
- feature-extraction
|
|
- sentence-similarity
|
|
- mteb
|
|
- transformers
|
|
- transformers.js
|
|
model-index:
|
|
- name: epoch_0_model
|
|
results:
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/amazon_counterfactual
|
|
name: MTEB AmazonCounterfactualClassification (en)
|
|
config: en
|
|
split: test
|
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
|
metrics:
|
|
- type: accuracy
|
|
value: 75.20895522388058
|
|
- type: ap
|
|
value: 38.57605549557802
|
|
- type: f1
|
|
value: 69.35586565857854
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/amazon_polarity
|
|
name: MTEB AmazonPolarityClassification
|
|
config: default
|
|
split: test
|
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
|
metrics:
|
|
- type: accuracy
|
|
value: 91.8144
|
|
- type: ap
|
|
value: 88.65222882032363
|
|
- type: f1
|
|
value: 91.80426301643274
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/amazon_reviews_multi
|
|
name: MTEB AmazonReviewsClassification (en)
|
|
config: en
|
|
split: test
|
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
|
metrics:
|
|
- type: accuracy
|
|
value: 47.162000000000006
|
|
- type: f1
|
|
value: 46.59329642263158
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: arguana
|
|
name: MTEB ArguAna
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 24.253
|
|
- type: map_at_10
|
|
value: 38.962
|
|
- type: map_at_100
|
|
value: 40.081
|
|
- type: map_at_1000
|
|
value: 40.089000000000006
|
|
- type: map_at_3
|
|
value: 33.499
|
|
- type: map_at_5
|
|
value: 36.351
|
|
- type: mrr_at_1
|
|
value: 24.609
|
|
- type: mrr_at_10
|
|
value: 39.099000000000004
|
|
- type: mrr_at_100
|
|
value: 40.211000000000006
|
|
- type: mrr_at_1000
|
|
value: 40.219
|
|
- type: mrr_at_3
|
|
value: 33.677
|
|
- type: mrr_at_5
|
|
value: 36.469
|
|
- type: ndcg_at_1
|
|
value: 24.253
|
|
- type: ndcg_at_10
|
|
value: 48.010999999999996
|
|
- type: ndcg_at_100
|
|
value: 52.756
|
|
- type: ndcg_at_1000
|
|
value: 52.964999999999996
|
|
- type: ndcg_at_3
|
|
value: 36.564
|
|
- type: ndcg_at_5
|
|
value: 41.711999999999996
|
|
- type: precision_at_1
|
|
value: 24.253
|
|
- type: precision_at_10
|
|
value: 7.738
|
|
- type: precision_at_100
|
|
value: 0.98
|
|
- type: precision_at_1000
|
|
value: 0.1
|
|
- type: precision_at_3
|
|
value: 15.149000000000001
|
|
- type: precision_at_5
|
|
value: 11.593
|
|
- type: recall_at_1
|
|
value: 24.253
|
|
- type: recall_at_10
|
|
value: 77.383
|
|
- type: recall_at_100
|
|
value: 98.009
|
|
- type: recall_at_1000
|
|
value: 99.644
|
|
- type: recall_at_3
|
|
value: 45.448
|
|
- type: recall_at_5
|
|
value: 57.965999999999994
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/arxiv-clustering-p2p
|
|
name: MTEB ArxivClusteringP2P
|
|
config: default
|
|
split: test
|
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
|
metrics:
|
|
- type: v_measure
|
|
value: 45.69069567851087
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/arxiv-clustering-s2s
|
|
name: MTEB ArxivClusteringS2S
|
|
config: default
|
|
split: test
|
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
|
metrics:
|
|
- type: v_measure
|
|
value: 36.35185490976283
|
|
- task:
|
|
type: Reranking
|
|
dataset:
|
|
type: mteb/askubuntudupquestions-reranking
|
|
name: MTEB AskUbuntuDupQuestions
|
|
config: default
|
|
split: test
|
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
|
metrics:
|
|
- type: map
|
|
value: 61.71274951450321
|
|
- type: mrr
|
|
value: 76.06032625423207
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/biosses-sts
|
|
name: MTEB BIOSSES
|
|
config: default
|
|
split: test
|
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 86.73980520022269
|
|
- type: cos_sim_spearman
|
|
value: 84.24649792685918
|
|
- type: euclidean_pearson
|
|
value: 85.85197641158186
|
|
- type: euclidean_spearman
|
|
value: 84.24649792685918
|
|
- type: manhattan_pearson
|
|
value: 86.26809552711346
|
|
- type: manhattan_spearman
|
|
value: 84.56397504030865
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/banking77
|
|
name: MTEB Banking77Classification
|
|
config: default
|
|
split: test
|
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
|
metrics:
|
|
- type: accuracy
|
|
value: 84.25324675324674
|
|
- type: f1
|
|
value: 84.17872280892557
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/biorxiv-clustering-p2p
|
|
name: MTEB BiorxivClusteringP2P
|
|
config: default
|
|
split: test
|
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
|
metrics:
|
|
- type: v_measure
|
|
value: 38.770253446400886
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/biorxiv-clustering-s2s
|
|
name: MTEB BiorxivClusteringS2S
|
|
config: default
|
|
split: test
|
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
|
metrics:
|
|
- type: v_measure
|
|
value: 32.94307095497281
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackAndroidRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 32.164
|
|
- type: map_at_10
|
|
value: 42.641
|
|
- type: map_at_100
|
|
value: 43.947
|
|
- type: map_at_1000
|
|
value: 44.074999999999996
|
|
- type: map_at_3
|
|
value: 39.592
|
|
- type: map_at_5
|
|
value: 41.204
|
|
- type: mrr_at_1
|
|
value: 39.628
|
|
- type: mrr_at_10
|
|
value: 48.625
|
|
- type: mrr_at_100
|
|
value: 49.368
|
|
- type: mrr_at_1000
|
|
value: 49.413000000000004
|
|
- type: mrr_at_3
|
|
value: 46.400000000000006
|
|
- type: mrr_at_5
|
|
value: 47.68
|
|
- type: ndcg_at_1
|
|
value: 39.628
|
|
- type: ndcg_at_10
|
|
value: 48.564
|
|
- type: ndcg_at_100
|
|
value: 53.507000000000005
|
|
- type: ndcg_at_1000
|
|
value: 55.635999999999996
|
|
- type: ndcg_at_3
|
|
value: 44.471
|
|
- type: ndcg_at_5
|
|
value: 46.137
|
|
- type: precision_at_1
|
|
value: 39.628
|
|
- type: precision_at_10
|
|
value: 8.856
|
|
- type: precision_at_100
|
|
value: 1.429
|
|
- type: precision_at_1000
|
|
value: 0.191
|
|
- type: precision_at_3
|
|
value: 21.268
|
|
- type: precision_at_5
|
|
value: 14.649000000000001
|
|
- type: recall_at_1
|
|
value: 32.164
|
|
- type: recall_at_10
|
|
value: 59.609
|
|
- type: recall_at_100
|
|
value: 80.521
|
|
- type: recall_at_1000
|
|
value: 94.245
|
|
- type: recall_at_3
|
|
value: 46.521
|
|
- type: recall_at_5
|
|
value: 52.083999999999996
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackEnglishRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 31.526
|
|
- type: map_at_10
|
|
value: 41.581
|
|
- type: map_at_100
|
|
value: 42.815999999999995
|
|
- type: map_at_1000
|
|
value: 42.936
|
|
- type: map_at_3
|
|
value: 38.605000000000004
|
|
- type: map_at_5
|
|
value: 40.351
|
|
- type: mrr_at_1
|
|
value: 39.489999999999995
|
|
- type: mrr_at_10
|
|
value: 47.829
|
|
- type: mrr_at_100
|
|
value: 48.512
|
|
- type: mrr_at_1000
|
|
value: 48.552
|
|
- type: mrr_at_3
|
|
value: 45.754
|
|
- type: mrr_at_5
|
|
value: 46.986
|
|
- type: ndcg_at_1
|
|
value: 39.489999999999995
|
|
- type: ndcg_at_10
|
|
value: 47.269
|
|
- type: ndcg_at_100
|
|
value: 51.564
|
|
- type: ndcg_at_1000
|
|
value: 53.53099999999999
|
|
- type: ndcg_at_3
|
|
value: 43.301
|
|
- type: ndcg_at_5
|
|
value: 45.239000000000004
|
|
- type: precision_at_1
|
|
value: 39.489999999999995
|
|
- type: precision_at_10
|
|
value: 8.93
|
|
- type: precision_at_100
|
|
value: 1.415
|
|
- type: precision_at_1000
|
|
value: 0.188
|
|
- type: precision_at_3
|
|
value: 20.892
|
|
- type: precision_at_5
|
|
value: 14.865999999999998
|
|
- type: recall_at_1
|
|
value: 31.526
|
|
- type: recall_at_10
|
|
value: 56.76
|
|
- type: recall_at_100
|
|
value: 75.029
|
|
- type: recall_at_1000
|
|
value: 87.491
|
|
- type: recall_at_3
|
|
value: 44.786
|
|
- type: recall_at_5
|
|
value: 50.254
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackGamingRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 40.987
|
|
- type: map_at_10
|
|
value: 52.827
|
|
- type: map_at_100
|
|
value: 53.751000000000005
|
|
- type: map_at_1000
|
|
value: 53.81
|
|
- type: map_at_3
|
|
value: 49.844
|
|
- type: map_at_5
|
|
value: 51.473
|
|
- type: mrr_at_1
|
|
value: 46.833999999999996
|
|
- type: mrr_at_10
|
|
value: 56.389
|
|
- type: mrr_at_100
|
|
value: 57.003
|
|
- type: mrr_at_1000
|
|
value: 57.034
|
|
- type: mrr_at_3
|
|
value: 54.17999999999999
|
|
- type: mrr_at_5
|
|
value: 55.486999999999995
|
|
- type: ndcg_at_1
|
|
value: 46.833999999999996
|
|
- type: ndcg_at_10
|
|
value: 58.372
|
|
- type: ndcg_at_100
|
|
value: 62.068
|
|
- type: ndcg_at_1000
|
|
value: 63.288
|
|
- type: ndcg_at_3
|
|
value: 53.400000000000006
|
|
- type: ndcg_at_5
|
|
value: 55.766000000000005
|
|
- type: precision_at_1
|
|
value: 46.833999999999996
|
|
- type: precision_at_10
|
|
value: 9.191
|
|
- type: precision_at_100
|
|
value: 1.192
|
|
- type: precision_at_1000
|
|
value: 0.134
|
|
- type: precision_at_3
|
|
value: 23.448
|
|
- type: precision_at_5
|
|
value: 15.862000000000002
|
|
- type: recall_at_1
|
|
value: 40.987
|
|
- type: recall_at_10
|
|
value: 71.146
|
|
- type: recall_at_100
|
|
value: 87.035
|
|
- type: recall_at_1000
|
|
value: 95.633
|
|
- type: recall_at_3
|
|
value: 58.025999999999996
|
|
- type: recall_at_5
|
|
value: 63.815999999999995
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackGisRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 24.587
|
|
- type: map_at_10
|
|
value: 33.114
|
|
- type: map_at_100
|
|
value: 34.043
|
|
- type: map_at_1000
|
|
value: 34.123999999999995
|
|
- type: map_at_3
|
|
value: 30.45
|
|
- type: map_at_5
|
|
value: 31.813999999999997
|
|
- type: mrr_at_1
|
|
value: 26.554
|
|
- type: mrr_at_10
|
|
value: 35.148
|
|
- type: mrr_at_100
|
|
value: 35.926
|
|
- type: mrr_at_1000
|
|
value: 35.991
|
|
- type: mrr_at_3
|
|
value: 32.599000000000004
|
|
- type: mrr_at_5
|
|
value: 33.893
|
|
- type: ndcg_at_1
|
|
value: 26.554
|
|
- type: ndcg_at_10
|
|
value: 38.132
|
|
- type: ndcg_at_100
|
|
value: 42.78
|
|
- type: ndcg_at_1000
|
|
value: 44.919
|
|
- type: ndcg_at_3
|
|
value: 32.833
|
|
- type: ndcg_at_5
|
|
value: 35.168
|
|
- type: precision_at_1
|
|
value: 26.554
|
|
- type: precision_at_10
|
|
value: 5.921
|
|
- type: precision_at_100
|
|
value: 0.8659999999999999
|
|
- type: precision_at_1000
|
|
value: 0.109
|
|
- type: precision_at_3
|
|
value: 13.861
|
|
- type: precision_at_5
|
|
value: 9.605
|
|
- type: recall_at_1
|
|
value: 24.587
|
|
- type: recall_at_10
|
|
value: 51.690000000000005
|
|
- type: recall_at_100
|
|
value: 73.428
|
|
- type: recall_at_1000
|
|
value: 89.551
|
|
- type: recall_at_3
|
|
value: 37.336999999999996
|
|
- type: recall_at_5
|
|
value: 43.047000000000004
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackMathematicaRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 16.715
|
|
- type: map_at_10
|
|
value: 24.251
|
|
- type: map_at_100
|
|
value: 25.326999999999998
|
|
- type: map_at_1000
|
|
value: 25.455
|
|
- type: map_at_3
|
|
value: 21.912000000000003
|
|
- type: map_at_5
|
|
value: 23.257
|
|
- type: mrr_at_1
|
|
value: 20.274
|
|
- type: mrr_at_10
|
|
value: 28.552
|
|
- type: mrr_at_100
|
|
value: 29.42
|
|
- type: mrr_at_1000
|
|
value: 29.497
|
|
- type: mrr_at_3
|
|
value: 26.14
|
|
- type: mrr_at_5
|
|
value: 27.502
|
|
- type: ndcg_at_1
|
|
value: 20.274
|
|
- type: ndcg_at_10
|
|
value: 29.088
|
|
- type: ndcg_at_100
|
|
value: 34.293
|
|
- type: ndcg_at_1000
|
|
value: 37.271
|
|
- type: ndcg_at_3
|
|
value: 24.708
|
|
- type: ndcg_at_5
|
|
value: 26.809
|
|
- type: precision_at_1
|
|
value: 20.274
|
|
- type: precision_at_10
|
|
value: 5.361
|
|
- type: precision_at_100
|
|
value: 0.915
|
|
- type: precision_at_1000
|
|
value: 0.13
|
|
- type: precision_at_3
|
|
value: 11.733
|
|
- type: precision_at_5
|
|
value: 8.556999999999999
|
|
- type: recall_at_1
|
|
value: 16.715
|
|
- type: recall_at_10
|
|
value: 39.587
|
|
- type: recall_at_100
|
|
value: 62.336000000000006
|
|
- type: recall_at_1000
|
|
value: 83.453
|
|
- type: recall_at_3
|
|
value: 27.839999999999996
|
|
- type: recall_at_5
|
|
value: 32.952999999999996
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackPhysicsRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 28.793000000000003
|
|
- type: map_at_10
|
|
value: 38.582
|
|
- type: map_at_100
|
|
value: 39.881
|
|
- type: map_at_1000
|
|
value: 39.987
|
|
- type: map_at_3
|
|
value: 35.851
|
|
- type: map_at_5
|
|
value: 37.289
|
|
- type: mrr_at_1
|
|
value: 34.455999999999996
|
|
- type: mrr_at_10
|
|
value: 43.909
|
|
- type: mrr_at_100
|
|
value: 44.74
|
|
- type: mrr_at_1000
|
|
value: 44.786
|
|
- type: mrr_at_3
|
|
value: 41.659
|
|
- type: mrr_at_5
|
|
value: 43.010999999999996
|
|
- type: ndcg_at_1
|
|
value: 34.455999999999996
|
|
- type: ndcg_at_10
|
|
value: 44.266
|
|
- type: ndcg_at_100
|
|
value: 49.639
|
|
- type: ndcg_at_1000
|
|
value: 51.644
|
|
- type: ndcg_at_3
|
|
value: 39.865
|
|
- type: ndcg_at_5
|
|
value: 41.887
|
|
- type: precision_at_1
|
|
value: 34.455999999999996
|
|
- type: precision_at_10
|
|
value: 7.843999999999999
|
|
- type: precision_at_100
|
|
value: 1.243
|
|
- type: precision_at_1000
|
|
value: 0.158
|
|
- type: precision_at_3
|
|
value: 18.831999999999997
|
|
- type: precision_at_5
|
|
value: 13.147
|
|
- type: recall_at_1
|
|
value: 28.793000000000003
|
|
- type: recall_at_10
|
|
value: 55.68300000000001
|
|
- type: recall_at_100
|
|
value: 77.99000000000001
|
|
- type: recall_at_1000
|
|
value: 91.183
|
|
- type: recall_at_3
|
|
value: 43.293
|
|
- type: recall_at_5
|
|
value: 48.618
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackProgrammersRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 25.907000000000004
|
|
- type: map_at_10
|
|
value: 35.519
|
|
- type: map_at_100
|
|
value: 36.806
|
|
- type: map_at_1000
|
|
value: 36.912
|
|
- type: map_at_3
|
|
value: 32.748
|
|
- type: map_at_5
|
|
value: 34.232
|
|
- type: mrr_at_1
|
|
value: 31.621
|
|
- type: mrr_at_10
|
|
value: 40.687
|
|
- type: mrr_at_100
|
|
value: 41.583
|
|
- type: mrr_at_1000
|
|
value: 41.638999999999996
|
|
- type: mrr_at_3
|
|
value: 38.527
|
|
- type: mrr_at_5
|
|
value: 39.612
|
|
- type: ndcg_at_1
|
|
value: 31.621
|
|
- type: ndcg_at_10
|
|
value: 41.003
|
|
- type: ndcg_at_100
|
|
value: 46.617999999999995
|
|
- type: ndcg_at_1000
|
|
value: 48.82
|
|
- type: ndcg_at_3
|
|
value: 36.542
|
|
- type: ndcg_at_5
|
|
value: 38.368
|
|
- type: precision_at_1
|
|
value: 31.621
|
|
- type: precision_at_10
|
|
value: 7.396999999999999
|
|
- type: precision_at_100
|
|
value: 1.191
|
|
- type: precision_at_1000
|
|
value: 0.153
|
|
- type: precision_at_3
|
|
value: 17.39
|
|
- type: precision_at_5
|
|
value: 12.1
|
|
- type: recall_at_1
|
|
value: 25.907000000000004
|
|
- type: recall_at_10
|
|
value: 52.115
|
|
- type: recall_at_100
|
|
value: 76.238
|
|
- type: recall_at_1000
|
|
value: 91.218
|
|
- type: recall_at_3
|
|
value: 39.417
|
|
- type: recall_at_5
|
|
value: 44.435
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 25.732166666666668
|
|
- type: map_at_10
|
|
value: 34.51616666666667
|
|
- type: map_at_100
|
|
value: 35.67241666666666
|
|
- type: map_at_1000
|
|
value: 35.78675
|
|
- type: map_at_3
|
|
value: 31.953416666666662
|
|
- type: map_at_5
|
|
value: 33.333
|
|
- type: mrr_at_1
|
|
value: 30.300166666666673
|
|
- type: mrr_at_10
|
|
value: 38.6255
|
|
- type: mrr_at_100
|
|
value: 39.46183333333334
|
|
- type: mrr_at_1000
|
|
value: 39.519999999999996
|
|
- type: mrr_at_3
|
|
value: 36.41299999999999
|
|
- type: mrr_at_5
|
|
value: 37.6365
|
|
- type: ndcg_at_1
|
|
value: 30.300166666666673
|
|
- type: ndcg_at_10
|
|
value: 39.61466666666667
|
|
- type: ndcg_at_100
|
|
value: 44.60808333333334
|
|
- type: ndcg_at_1000
|
|
value: 46.91708333333334
|
|
- type: ndcg_at_3
|
|
value: 35.26558333333333
|
|
- type: ndcg_at_5
|
|
value: 37.220000000000006
|
|
- type: precision_at_1
|
|
value: 30.300166666666673
|
|
- type: precision_at_10
|
|
value: 6.837416666666667
|
|
- type: precision_at_100
|
|
value: 1.10425
|
|
- type: precision_at_1000
|
|
value: 0.14875
|
|
- type: precision_at_3
|
|
value: 16.13716666666667
|
|
- type: precision_at_5
|
|
value: 11.2815
|
|
- type: recall_at_1
|
|
value: 25.732166666666668
|
|
- type: recall_at_10
|
|
value: 50.578916666666665
|
|
- type: recall_at_100
|
|
value: 72.42183333333334
|
|
- type: recall_at_1000
|
|
value: 88.48766666666667
|
|
- type: recall_at_3
|
|
value: 38.41325
|
|
- type: recall_at_5
|
|
value: 43.515750000000004
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackStatsRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 23.951
|
|
- type: map_at_10
|
|
value: 30.974
|
|
- type: map_at_100
|
|
value: 31.804
|
|
- type: map_at_1000
|
|
value: 31.900000000000002
|
|
- type: map_at_3
|
|
value: 28.762
|
|
- type: map_at_5
|
|
value: 29.94
|
|
- type: mrr_at_1
|
|
value: 26.534000000000002
|
|
- type: mrr_at_10
|
|
value: 33.553
|
|
- type: mrr_at_100
|
|
value: 34.297
|
|
- type: mrr_at_1000
|
|
value: 34.36
|
|
- type: mrr_at_3
|
|
value: 31.391000000000002
|
|
- type: mrr_at_5
|
|
value: 32.525999999999996
|
|
- type: ndcg_at_1
|
|
value: 26.534000000000002
|
|
- type: ndcg_at_10
|
|
value: 35.112
|
|
- type: ndcg_at_100
|
|
value: 39.28
|
|
- type: ndcg_at_1000
|
|
value: 41.723
|
|
- type: ndcg_at_3
|
|
value: 30.902
|
|
- type: ndcg_at_5
|
|
value: 32.759
|
|
- type: precision_at_1
|
|
value: 26.534000000000002
|
|
- type: precision_at_10
|
|
value: 5.445
|
|
- type: precision_at_100
|
|
value: 0.819
|
|
- type: precision_at_1000
|
|
value: 0.11
|
|
- type: precision_at_3
|
|
value: 12.986
|
|
- type: precision_at_5
|
|
value: 9.049
|
|
- type: recall_at_1
|
|
value: 23.951
|
|
- type: recall_at_10
|
|
value: 45.24
|
|
- type: recall_at_100
|
|
value: 64.12299999999999
|
|
- type: recall_at_1000
|
|
value: 82.28999999999999
|
|
- type: recall_at_3
|
|
value: 33.806000000000004
|
|
- type: recall_at_5
|
|
value: 38.277
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackTexRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 16.829
|
|
- type: map_at_10
|
|
value: 23.684
|
|
- type: map_at_100
|
|
value: 24.683
|
|
- type: map_at_1000
|
|
value: 24.81
|
|
- type: map_at_3
|
|
value: 21.554000000000002
|
|
- type: map_at_5
|
|
value: 22.768
|
|
- type: mrr_at_1
|
|
value: 20.096
|
|
- type: mrr_at_10
|
|
value: 27.230999999999998
|
|
- type: mrr_at_100
|
|
value: 28.083999999999996
|
|
- type: mrr_at_1000
|
|
value: 28.166000000000004
|
|
- type: mrr_at_3
|
|
value: 25.212
|
|
- type: mrr_at_5
|
|
value: 26.32
|
|
- type: ndcg_at_1
|
|
value: 20.096
|
|
- type: ndcg_at_10
|
|
value: 27.989000000000004
|
|
- type: ndcg_at_100
|
|
value: 32.847
|
|
- type: ndcg_at_1000
|
|
value: 35.896
|
|
- type: ndcg_at_3
|
|
value: 24.116
|
|
- type: ndcg_at_5
|
|
value: 25.964
|
|
- type: precision_at_1
|
|
value: 20.096
|
|
- type: precision_at_10
|
|
value: 5
|
|
- type: precision_at_100
|
|
value: 0.8750000000000001
|
|
- type: precision_at_1000
|
|
value: 0.131
|
|
- type: precision_at_3
|
|
value: 11.207
|
|
- type: precision_at_5
|
|
value: 8.08
|
|
- type: recall_at_1
|
|
value: 16.829
|
|
- type: recall_at_10
|
|
value: 37.407000000000004
|
|
- type: recall_at_100
|
|
value: 59.101000000000006
|
|
- type: recall_at_1000
|
|
value: 81.024
|
|
- type: recall_at_3
|
|
value: 26.739
|
|
- type: recall_at_5
|
|
value: 31.524
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackUnixRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 24.138
|
|
- type: map_at_10
|
|
value: 32.275999999999996
|
|
- type: map_at_100
|
|
value: 33.416000000000004
|
|
- type: map_at_1000
|
|
value: 33.527
|
|
- type: map_at_3
|
|
value: 29.854000000000003
|
|
- type: map_at_5
|
|
value: 31.096
|
|
- type: mrr_at_1
|
|
value: 28.450999999999997
|
|
- type: mrr_at_10
|
|
value: 36.214
|
|
- type: mrr_at_100
|
|
value: 37.134
|
|
- type: mrr_at_1000
|
|
value: 37.198
|
|
- type: mrr_at_3
|
|
value: 34.001999999999995
|
|
- type: mrr_at_5
|
|
value: 35.187000000000005
|
|
- type: ndcg_at_1
|
|
value: 28.450999999999997
|
|
- type: ndcg_at_10
|
|
value: 37.166
|
|
- type: ndcg_at_100
|
|
value: 42.454
|
|
- type: ndcg_at_1000
|
|
value: 44.976
|
|
- type: ndcg_at_3
|
|
value: 32.796
|
|
- type: ndcg_at_5
|
|
value: 34.631
|
|
- type: precision_at_1
|
|
value: 28.450999999999997
|
|
- type: precision_at_10
|
|
value: 6.241
|
|
- type: precision_at_100
|
|
value: 0.9950000000000001
|
|
- type: precision_at_1000
|
|
value: 0.133
|
|
- type: precision_at_3
|
|
value: 14.801
|
|
- type: precision_at_5
|
|
value: 10.280000000000001
|
|
- type: recall_at_1
|
|
value: 24.138
|
|
- type: recall_at_10
|
|
value: 48.111
|
|
- type: recall_at_100
|
|
value: 71.245
|
|
- type: recall_at_1000
|
|
value: 88.986
|
|
- type: recall_at_3
|
|
value: 36.119
|
|
- type: recall_at_5
|
|
value: 40.846
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackWebmastersRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 23.244
|
|
- type: map_at_10
|
|
value: 31.227
|
|
- type: map_at_100
|
|
value: 33.007
|
|
- type: map_at_1000
|
|
value: 33.223
|
|
- type: map_at_3
|
|
value: 28.924
|
|
- type: map_at_5
|
|
value: 30.017
|
|
- type: mrr_at_1
|
|
value: 27.668
|
|
- type: mrr_at_10
|
|
value: 35.524
|
|
- type: mrr_at_100
|
|
value: 36.699
|
|
- type: mrr_at_1000
|
|
value: 36.759
|
|
- type: mrr_at_3
|
|
value: 33.366
|
|
- type: mrr_at_5
|
|
value: 34.552
|
|
- type: ndcg_at_1
|
|
value: 27.668
|
|
- type: ndcg_at_10
|
|
value: 36.381
|
|
- type: ndcg_at_100
|
|
value: 43.062
|
|
- type: ndcg_at_1000
|
|
value: 45.656
|
|
- type: ndcg_at_3
|
|
value: 32.501999999999995
|
|
- type: ndcg_at_5
|
|
value: 34.105999999999995
|
|
- type: precision_at_1
|
|
value: 27.668
|
|
- type: precision_at_10
|
|
value: 6.798
|
|
- type: precision_at_100
|
|
value: 1.492
|
|
- type: precision_at_1000
|
|
value: 0.234
|
|
- type: precision_at_3
|
|
value: 15.152
|
|
- type: precision_at_5
|
|
value: 10.791
|
|
- type: recall_at_1
|
|
value: 23.244
|
|
- type: recall_at_10
|
|
value: 45.979
|
|
- type: recall_at_100
|
|
value: 74.822
|
|
- type: recall_at_1000
|
|
value: 91.078
|
|
- type: recall_at_3
|
|
value: 34.925
|
|
- type: recall_at_5
|
|
value: 39.126
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: BeIR/cqadupstack
|
|
name: MTEB CQADupstackWordpressRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 19.945
|
|
- type: map_at_10
|
|
value: 27.517999999999997
|
|
- type: map_at_100
|
|
value: 28.588
|
|
- type: map_at_1000
|
|
value: 28.682000000000002
|
|
- type: map_at_3
|
|
value: 25.345000000000002
|
|
- type: map_at_5
|
|
value: 26.555
|
|
- type: mrr_at_1
|
|
value: 21.996
|
|
- type: mrr_at_10
|
|
value: 29.845
|
|
- type: mrr_at_100
|
|
value: 30.775999999999996
|
|
- type: mrr_at_1000
|
|
value: 30.845
|
|
- type: mrr_at_3
|
|
value: 27.726
|
|
- type: mrr_at_5
|
|
value: 28.882
|
|
- type: ndcg_at_1
|
|
value: 21.996
|
|
- type: ndcg_at_10
|
|
value: 32.034
|
|
- type: ndcg_at_100
|
|
value: 37.185
|
|
- type: ndcg_at_1000
|
|
value: 39.645
|
|
- type: ndcg_at_3
|
|
value: 27.750999999999998
|
|
- type: ndcg_at_5
|
|
value: 29.805999999999997
|
|
- type: precision_at_1
|
|
value: 21.996
|
|
- type: precision_at_10
|
|
value: 5.065
|
|
- type: precision_at_100
|
|
value: 0.819
|
|
- type: precision_at_1000
|
|
value: 0.11399999999999999
|
|
- type: precision_at_3
|
|
value: 12.076
|
|
- type: precision_at_5
|
|
value: 8.392
|
|
- type: recall_at_1
|
|
value: 19.945
|
|
- type: recall_at_10
|
|
value: 43.62
|
|
- type: recall_at_100
|
|
value: 67.194
|
|
- type: recall_at_1000
|
|
value: 85.7
|
|
- type: recall_at_3
|
|
value: 32.15
|
|
- type: recall_at_5
|
|
value: 37.208999999999996
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: climate-fever
|
|
name: MTEB ClimateFEVER
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 18.279
|
|
- type: map_at_10
|
|
value: 31.052999999999997
|
|
- type: map_at_100
|
|
value: 33.125
|
|
- type: map_at_1000
|
|
value: 33.306000000000004
|
|
- type: map_at_3
|
|
value: 26.208
|
|
- type: map_at_5
|
|
value: 28.857
|
|
- type: mrr_at_1
|
|
value: 42.671
|
|
- type: mrr_at_10
|
|
value: 54.557
|
|
- type: mrr_at_100
|
|
value: 55.142
|
|
- type: mrr_at_1000
|
|
value: 55.169000000000004
|
|
- type: mrr_at_3
|
|
value: 51.488
|
|
- type: mrr_at_5
|
|
value: 53.439
|
|
- type: ndcg_at_1
|
|
value: 42.671
|
|
- type: ndcg_at_10
|
|
value: 41.276
|
|
- type: ndcg_at_100
|
|
value: 48.376000000000005
|
|
- type: ndcg_at_1000
|
|
value: 51.318
|
|
- type: ndcg_at_3
|
|
value: 35.068
|
|
- type: ndcg_at_5
|
|
value: 37.242
|
|
- type: precision_at_1
|
|
value: 42.671
|
|
- type: precision_at_10
|
|
value: 12.638
|
|
- type: precision_at_100
|
|
value: 2.045
|
|
- type: precision_at_1000
|
|
value: 0.26
|
|
- type: precision_at_3
|
|
value: 26.08
|
|
- type: precision_at_5
|
|
value: 19.805
|
|
- type: recall_at_1
|
|
value: 18.279
|
|
- type: recall_at_10
|
|
value: 46.946
|
|
- type: recall_at_100
|
|
value: 70.97200000000001
|
|
- type: recall_at_1000
|
|
value: 87.107
|
|
- type: recall_at_3
|
|
value: 31.147999999999996
|
|
- type: recall_at_5
|
|
value: 38.099
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: dbpedia-entity
|
|
name: MTEB DBPedia
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 8.573
|
|
- type: map_at_10
|
|
value: 19.747
|
|
- type: map_at_100
|
|
value: 28.205000000000002
|
|
- type: map_at_1000
|
|
value: 29.831000000000003
|
|
- type: map_at_3
|
|
value: 14.109
|
|
- type: map_at_5
|
|
value: 16.448999999999998
|
|
- type: mrr_at_1
|
|
value: 71
|
|
- type: mrr_at_10
|
|
value: 77.68599999999999
|
|
- type: mrr_at_100
|
|
value: 77.995
|
|
- type: mrr_at_1000
|
|
value: 78.00200000000001
|
|
- type: mrr_at_3
|
|
value: 76.292
|
|
- type: mrr_at_5
|
|
value: 77.029
|
|
- type: ndcg_at_1
|
|
value: 59.12500000000001
|
|
- type: ndcg_at_10
|
|
value: 43.9
|
|
- type: ndcg_at_100
|
|
value: 47.863
|
|
- type: ndcg_at_1000
|
|
value: 54.848
|
|
- type: ndcg_at_3
|
|
value: 49.803999999999995
|
|
- type: ndcg_at_5
|
|
value: 46.317
|
|
- type: precision_at_1
|
|
value: 71
|
|
- type: precision_at_10
|
|
value: 34.4
|
|
- type: precision_at_100
|
|
value: 11.063
|
|
- type: precision_at_1000
|
|
value: 1.989
|
|
- type: precision_at_3
|
|
value: 52.333
|
|
- type: precision_at_5
|
|
value: 43.7
|
|
- type: recall_at_1
|
|
value: 8.573
|
|
- type: recall_at_10
|
|
value: 25.615
|
|
- type: recall_at_100
|
|
value: 53.385000000000005
|
|
- type: recall_at_1000
|
|
value: 75.46000000000001
|
|
- type: recall_at_3
|
|
value: 15.429
|
|
- type: recall_at_5
|
|
value: 19.357
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/emotion
|
|
name: MTEB EmotionClassification
|
|
config: default
|
|
split: test
|
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
|
metrics:
|
|
- type: accuracy
|
|
value: 47.989999999999995
|
|
- type: f1
|
|
value: 42.776314451497555
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: fever
|
|
name: MTEB FEVER
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 74.13499999999999
|
|
- type: map_at_10
|
|
value: 82.825
|
|
- type: map_at_100
|
|
value: 83.096
|
|
- type: map_at_1000
|
|
value: 83.111
|
|
- type: map_at_3
|
|
value: 81.748
|
|
- type: map_at_5
|
|
value: 82.446
|
|
- type: mrr_at_1
|
|
value: 79.553
|
|
- type: mrr_at_10
|
|
value: 86.654
|
|
- type: mrr_at_100
|
|
value: 86.774
|
|
- type: mrr_at_1000
|
|
value: 86.778
|
|
- type: mrr_at_3
|
|
value: 85.981
|
|
- type: mrr_at_5
|
|
value: 86.462
|
|
- type: ndcg_at_1
|
|
value: 79.553
|
|
- type: ndcg_at_10
|
|
value: 86.345
|
|
- type: ndcg_at_100
|
|
value: 87.32
|
|
- type: ndcg_at_1000
|
|
value: 87.58200000000001
|
|
- type: ndcg_at_3
|
|
value: 84.719
|
|
- type: ndcg_at_5
|
|
value: 85.677
|
|
- type: precision_at_1
|
|
value: 79.553
|
|
- type: precision_at_10
|
|
value: 10.402000000000001
|
|
- type: precision_at_100
|
|
value: 1.1119999999999999
|
|
- type: precision_at_1000
|
|
value: 0.11499999999999999
|
|
- type: precision_at_3
|
|
value: 32.413
|
|
- type: precision_at_5
|
|
value: 20.138
|
|
- type: recall_at_1
|
|
value: 74.13499999999999
|
|
- type: recall_at_10
|
|
value: 93.215
|
|
- type: recall_at_100
|
|
value: 97.083
|
|
- type: recall_at_1000
|
|
value: 98.732
|
|
- type: recall_at_3
|
|
value: 88.79
|
|
- type: recall_at_5
|
|
value: 91.259
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: fiqa
|
|
name: MTEB FiQA2018
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 18.298000000000002
|
|
- type: map_at_10
|
|
value: 29.901
|
|
- type: map_at_100
|
|
value: 31.528
|
|
- type: map_at_1000
|
|
value: 31.713
|
|
- type: map_at_3
|
|
value: 25.740000000000002
|
|
- type: map_at_5
|
|
value: 28.227999999999998
|
|
- type: mrr_at_1
|
|
value: 36.728
|
|
- type: mrr_at_10
|
|
value: 45.401
|
|
- type: mrr_at_100
|
|
value: 46.27
|
|
- type: mrr_at_1000
|
|
value: 46.315
|
|
- type: mrr_at_3
|
|
value: 42.978
|
|
- type: mrr_at_5
|
|
value: 44.29
|
|
- type: ndcg_at_1
|
|
value: 36.728
|
|
- type: ndcg_at_10
|
|
value: 37.456
|
|
- type: ndcg_at_100
|
|
value: 43.832
|
|
- type: ndcg_at_1000
|
|
value: 47
|
|
- type: ndcg_at_3
|
|
value: 33.694
|
|
- type: ndcg_at_5
|
|
value: 35.085
|
|
- type: precision_at_1
|
|
value: 36.728
|
|
- type: precision_at_10
|
|
value: 10.386
|
|
- type: precision_at_100
|
|
value: 1.701
|
|
- type: precision_at_1000
|
|
value: 0.22599999999999998
|
|
- type: precision_at_3
|
|
value: 22.479
|
|
- type: precision_at_5
|
|
value: 16.605
|
|
- type: recall_at_1
|
|
value: 18.298000000000002
|
|
- type: recall_at_10
|
|
value: 44.369
|
|
- type: recall_at_100
|
|
value: 68.098
|
|
- type: recall_at_1000
|
|
value: 87.21900000000001
|
|
- type: recall_at_3
|
|
value: 30.215999999999998
|
|
- type: recall_at_5
|
|
value: 36.861
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: hotpotqa
|
|
name: MTEB HotpotQA
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 39.568
|
|
- type: map_at_10
|
|
value: 65.061
|
|
- type: map_at_100
|
|
value: 65.896
|
|
- type: map_at_1000
|
|
value: 65.95100000000001
|
|
- type: map_at_3
|
|
value: 61.831
|
|
- type: map_at_5
|
|
value: 63.849000000000004
|
|
- type: mrr_at_1
|
|
value: 79.136
|
|
- type: mrr_at_10
|
|
value: 84.58200000000001
|
|
- type: mrr_at_100
|
|
value: 84.765
|
|
- type: mrr_at_1000
|
|
value: 84.772
|
|
- type: mrr_at_3
|
|
value: 83.684
|
|
- type: mrr_at_5
|
|
value: 84.223
|
|
- type: ndcg_at_1
|
|
value: 79.136
|
|
- type: ndcg_at_10
|
|
value: 72.622
|
|
- type: ndcg_at_100
|
|
value: 75.539
|
|
- type: ndcg_at_1000
|
|
value: 76.613
|
|
- type: ndcg_at_3
|
|
value: 68.065
|
|
- type: ndcg_at_5
|
|
value: 70.58
|
|
- type: precision_at_1
|
|
value: 79.136
|
|
- type: precision_at_10
|
|
value: 15.215
|
|
- type: precision_at_100
|
|
value: 1.7500000000000002
|
|
- type: precision_at_1000
|
|
value: 0.189
|
|
- type: precision_at_3
|
|
value: 44.011
|
|
- type: precision_at_5
|
|
value: 28.388999999999996
|
|
- type: recall_at_1
|
|
value: 39.568
|
|
- type: recall_at_10
|
|
value: 76.077
|
|
- type: recall_at_100
|
|
value: 87.481
|
|
- type: recall_at_1000
|
|
value: 94.56400000000001
|
|
- type: recall_at_3
|
|
value: 66.01599999999999
|
|
- type: recall_at_5
|
|
value: 70.97200000000001
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/imdb
|
|
name: MTEB ImdbClassification
|
|
config: default
|
|
split: test
|
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
|
metrics:
|
|
- type: accuracy
|
|
value: 85.312
|
|
- type: ap
|
|
value: 80.36296867333715
|
|
- type: f1
|
|
value: 85.26613311552218
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: msmarco
|
|
name: MTEB MSMARCO
|
|
config: default
|
|
split: dev
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 23.363999999999997
|
|
- type: map_at_10
|
|
value: 35.711999999999996
|
|
- type: map_at_100
|
|
value: 36.876999999999995
|
|
- type: map_at_1000
|
|
value: 36.923
|
|
- type: map_at_3
|
|
value: 32.034
|
|
- type: map_at_5
|
|
value: 34.159
|
|
- type: mrr_at_1
|
|
value: 24.04
|
|
- type: mrr_at_10
|
|
value: 36.345
|
|
- type: mrr_at_100
|
|
value: 37.441
|
|
- type: mrr_at_1000
|
|
value: 37.480000000000004
|
|
- type: mrr_at_3
|
|
value: 32.713
|
|
- type: mrr_at_5
|
|
value: 34.824
|
|
- type: ndcg_at_1
|
|
value: 24.026
|
|
- type: ndcg_at_10
|
|
value: 42.531
|
|
- type: ndcg_at_100
|
|
value: 48.081
|
|
- type: ndcg_at_1000
|
|
value: 49.213
|
|
- type: ndcg_at_3
|
|
value: 35.044
|
|
- type: ndcg_at_5
|
|
value: 38.834
|
|
- type: precision_at_1
|
|
value: 24.026
|
|
- type: precision_at_10
|
|
value: 6.622999999999999
|
|
- type: precision_at_100
|
|
value: 0.941
|
|
- type: precision_at_1000
|
|
value: 0.104
|
|
- type: precision_at_3
|
|
value: 14.909
|
|
- type: precision_at_5
|
|
value: 10.871
|
|
- type: recall_at_1
|
|
value: 23.363999999999997
|
|
- type: recall_at_10
|
|
value: 63.426
|
|
- type: recall_at_100
|
|
value: 88.96300000000001
|
|
- type: recall_at_1000
|
|
value: 97.637
|
|
- type: recall_at_3
|
|
value: 43.095
|
|
- type: recall_at_5
|
|
value: 52.178000000000004
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/mtop_domain
|
|
name: MTEB MTOPDomainClassification (en)
|
|
config: en
|
|
split: test
|
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
|
metrics:
|
|
- type: accuracy
|
|
value: 93.0095759233926
|
|
- type: f1
|
|
value: 92.78387794667408
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/mtop_intent
|
|
name: MTEB MTOPIntentClassification (en)
|
|
config: en
|
|
split: test
|
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
|
metrics:
|
|
- type: accuracy
|
|
value: 75.0296397628819
|
|
- type: f1
|
|
value: 58.45699589820874
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/amazon_massive_intent
|
|
name: MTEB MassiveIntentClassification (en)
|
|
config: en
|
|
split: test
|
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
|
metrics:
|
|
- type: accuracy
|
|
value: 73.45662407531944
|
|
- type: f1
|
|
value: 71.42364781421813
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/amazon_massive_scenario
|
|
name: MTEB MassiveScenarioClassification (en)
|
|
config: en
|
|
split: test
|
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
|
metrics:
|
|
- type: accuracy
|
|
value: 77.07800941492937
|
|
- type: f1
|
|
value: 77.22799045640845
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/medrxiv-clustering-p2p
|
|
name: MTEB MedrxivClusteringP2P
|
|
config: default
|
|
split: test
|
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
|
metrics:
|
|
- type: v_measure
|
|
value: 34.531234379250606
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/medrxiv-clustering-s2s
|
|
name: MTEB MedrxivClusteringS2S
|
|
config: default
|
|
split: test
|
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
|
metrics:
|
|
- type: v_measure
|
|
value: 30.941490381193802
|
|
- task:
|
|
type: Reranking
|
|
dataset:
|
|
type: mteb/mind_small
|
|
name: MTEB MindSmallReranking
|
|
config: default
|
|
split: test
|
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
|
metrics:
|
|
- type: map
|
|
value: 30.3115090856725
|
|
- type: mrr
|
|
value: 31.290667638675757
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: nfcorpus
|
|
name: MTEB NFCorpus
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 5.465
|
|
- type: map_at_10
|
|
value: 13.03
|
|
- type: map_at_100
|
|
value: 16.057
|
|
- type: map_at_1000
|
|
value: 17.49
|
|
- type: map_at_3
|
|
value: 9.553
|
|
- type: map_at_5
|
|
value: 11.204
|
|
- type: mrr_at_1
|
|
value: 43.653
|
|
- type: mrr_at_10
|
|
value: 53.269
|
|
- type: mrr_at_100
|
|
value: 53.72
|
|
- type: mrr_at_1000
|
|
value: 53.761
|
|
- type: mrr_at_3
|
|
value: 50.929
|
|
- type: mrr_at_5
|
|
value: 52.461
|
|
- type: ndcg_at_1
|
|
value: 42.26
|
|
- type: ndcg_at_10
|
|
value: 34.673
|
|
- type: ndcg_at_100
|
|
value: 30.759999999999998
|
|
- type: ndcg_at_1000
|
|
value: 39.728
|
|
- type: ndcg_at_3
|
|
value: 40.349000000000004
|
|
- type: ndcg_at_5
|
|
value: 37.915
|
|
- type: precision_at_1
|
|
value: 43.653
|
|
- type: precision_at_10
|
|
value: 25.789
|
|
- type: precision_at_100
|
|
value: 7.754999999999999
|
|
- type: precision_at_1000
|
|
value: 2.07
|
|
- type: precision_at_3
|
|
value: 38.596000000000004
|
|
- type: precision_at_5
|
|
value: 33.251
|
|
- type: recall_at_1
|
|
value: 5.465
|
|
- type: recall_at_10
|
|
value: 17.148
|
|
- type: recall_at_100
|
|
value: 29.768
|
|
- type: recall_at_1000
|
|
value: 62.239
|
|
- type: recall_at_3
|
|
value: 10.577
|
|
- type: recall_at_5
|
|
value: 13.315
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: nq
|
|
name: MTEB NQ
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 37.008
|
|
- type: map_at_10
|
|
value: 52.467
|
|
- type: map_at_100
|
|
value: 53.342999999999996
|
|
- type: map_at_1000
|
|
value: 53.366
|
|
- type: map_at_3
|
|
value: 48.412
|
|
- type: map_at_5
|
|
value: 50.875
|
|
- type: mrr_at_1
|
|
value: 41.541
|
|
- type: mrr_at_10
|
|
value: 54.967
|
|
- type: mrr_at_100
|
|
value: 55.611
|
|
- type: mrr_at_1000
|
|
value: 55.627
|
|
- type: mrr_at_3
|
|
value: 51.824999999999996
|
|
- type: mrr_at_5
|
|
value: 53.763000000000005
|
|
- type: ndcg_at_1
|
|
value: 41.541
|
|
- type: ndcg_at_10
|
|
value: 59.724999999999994
|
|
- type: ndcg_at_100
|
|
value: 63.38700000000001
|
|
- type: ndcg_at_1000
|
|
value: 63.883
|
|
- type: ndcg_at_3
|
|
value: 52.331
|
|
- type: ndcg_at_5
|
|
value: 56.327000000000005
|
|
- type: precision_at_1
|
|
value: 41.541
|
|
- type: precision_at_10
|
|
value: 9.447
|
|
- type: precision_at_100
|
|
value: 1.1520000000000001
|
|
- type: precision_at_1000
|
|
value: 0.12
|
|
- type: precision_at_3
|
|
value: 23.262
|
|
- type: precision_at_5
|
|
value: 16.314999999999998
|
|
- type: recall_at_1
|
|
value: 37.008
|
|
- type: recall_at_10
|
|
value: 79.145
|
|
- type: recall_at_100
|
|
value: 94.986
|
|
- type: recall_at_1000
|
|
value: 98.607
|
|
- type: recall_at_3
|
|
value: 60.277
|
|
- type: recall_at_5
|
|
value: 69.407
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: quora
|
|
name: MTEB QuoraRetrieval
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 70.402
|
|
- type: map_at_10
|
|
value: 84.181
|
|
- type: map_at_100
|
|
value: 84.796
|
|
- type: map_at_1000
|
|
value: 84.81400000000001
|
|
- type: map_at_3
|
|
value: 81.209
|
|
- type: map_at_5
|
|
value: 83.085
|
|
- type: mrr_at_1
|
|
value: 81.02000000000001
|
|
- type: mrr_at_10
|
|
value: 87.263
|
|
- type: mrr_at_100
|
|
value: 87.36
|
|
- type: mrr_at_1000
|
|
value: 87.36
|
|
- type: mrr_at_3
|
|
value: 86.235
|
|
- type: mrr_at_5
|
|
value: 86.945
|
|
- type: ndcg_at_1
|
|
value: 81.01
|
|
- type: ndcg_at_10
|
|
value: 87.99900000000001
|
|
- type: ndcg_at_100
|
|
value: 89.217
|
|
- type: ndcg_at_1000
|
|
value: 89.33
|
|
- type: ndcg_at_3
|
|
value: 85.053
|
|
- type: ndcg_at_5
|
|
value: 86.703
|
|
- type: precision_at_1
|
|
value: 81.01
|
|
- type: precision_at_10
|
|
value: 13.336
|
|
- type: precision_at_100
|
|
value: 1.52
|
|
- type: precision_at_1000
|
|
value: 0.156
|
|
- type: precision_at_3
|
|
value: 37.14
|
|
- type: precision_at_5
|
|
value: 24.44
|
|
- type: recall_at_1
|
|
value: 70.402
|
|
- type: recall_at_10
|
|
value: 95.214
|
|
- type: recall_at_100
|
|
value: 99.438
|
|
- type: recall_at_1000
|
|
value: 99.928
|
|
- type: recall_at_3
|
|
value: 86.75699999999999
|
|
- type: recall_at_5
|
|
value: 91.44099999999999
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/reddit-clustering
|
|
name: MTEB RedditClustering
|
|
config: default
|
|
split: test
|
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
|
metrics:
|
|
- type: v_measure
|
|
value: 56.51721502758904
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/reddit-clustering-p2p
|
|
name: MTEB RedditClusteringP2P
|
|
config: default
|
|
split: test
|
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
|
metrics:
|
|
- type: v_measure
|
|
value: 61.054808572333016
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: scidocs
|
|
name: MTEB SCIDOCS
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 4.578
|
|
- type: map_at_10
|
|
value: 11.036999999999999
|
|
- type: map_at_100
|
|
value: 12.879999999999999
|
|
- type: map_at_1000
|
|
value: 13.150999999999998
|
|
- type: map_at_3
|
|
value: 8.133
|
|
- type: map_at_5
|
|
value: 9.559
|
|
- type: mrr_at_1
|
|
value: 22.6
|
|
- type: mrr_at_10
|
|
value: 32.68
|
|
- type: mrr_at_100
|
|
value: 33.789
|
|
- type: mrr_at_1000
|
|
value: 33.854
|
|
- type: mrr_at_3
|
|
value: 29.7
|
|
- type: mrr_at_5
|
|
value: 31.480000000000004
|
|
- type: ndcg_at_1
|
|
value: 22.6
|
|
- type: ndcg_at_10
|
|
value: 18.616
|
|
- type: ndcg_at_100
|
|
value: 25.883
|
|
- type: ndcg_at_1000
|
|
value: 30.944
|
|
- type: ndcg_at_3
|
|
value: 18.136
|
|
- type: ndcg_at_5
|
|
value: 15.625
|
|
- type: precision_at_1
|
|
value: 22.6
|
|
- type: precision_at_10
|
|
value: 9.48
|
|
- type: precision_at_100
|
|
value: 1.991
|
|
- type: precision_at_1000
|
|
value: 0.321
|
|
- type: precision_at_3
|
|
value: 16.8
|
|
- type: precision_at_5
|
|
value: 13.54
|
|
- type: recall_at_1
|
|
value: 4.578
|
|
- type: recall_at_10
|
|
value: 19.213
|
|
- type: recall_at_100
|
|
value: 40.397
|
|
- type: recall_at_1000
|
|
value: 65.2
|
|
- type: recall_at_3
|
|
value: 10.208
|
|
- type: recall_at_5
|
|
value: 13.718
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sickr-sts
|
|
name: MTEB SICK-R
|
|
config: default
|
|
split: test
|
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 83.44288351714071
|
|
- type: cos_sim_spearman
|
|
value: 79.37995604564952
|
|
- type: euclidean_pearson
|
|
value: 81.1078874670718
|
|
- type: euclidean_spearman
|
|
value: 79.37995905980499
|
|
- type: manhattan_pearson
|
|
value: 81.03697527288986
|
|
- type: manhattan_spearman
|
|
value: 79.33490235296236
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts12-sts
|
|
name: MTEB STS12
|
|
config: default
|
|
split: test
|
|
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 84.95557650436523
|
|
- type: cos_sim_spearman
|
|
value: 78.5190672399868
|
|
- type: euclidean_pearson
|
|
value: 81.58064025904707
|
|
- type: euclidean_spearman
|
|
value: 78.5190672399868
|
|
- type: manhattan_pearson
|
|
value: 81.52857930619889
|
|
- type: manhattan_spearman
|
|
value: 78.50421361308034
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts13-sts
|
|
name: MTEB STS13
|
|
config: default
|
|
split: test
|
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 84.79128416228737
|
|
- type: cos_sim_spearman
|
|
value: 86.05402451477147
|
|
- type: euclidean_pearson
|
|
value: 85.46280267054289
|
|
- type: euclidean_spearman
|
|
value: 86.05402451477147
|
|
- type: manhattan_pearson
|
|
value: 85.46278563858236
|
|
- type: manhattan_spearman
|
|
value: 86.08079590861004
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts14-sts
|
|
name: MTEB STS14
|
|
config: default
|
|
split: test
|
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 83.20623089568763
|
|
- type: cos_sim_spearman
|
|
value: 81.53786907061009
|
|
- type: euclidean_pearson
|
|
value: 82.82272250091494
|
|
- type: euclidean_spearman
|
|
value: 81.53786907061009
|
|
- type: manhattan_pearson
|
|
value: 82.78850494027013
|
|
- type: manhattan_spearman
|
|
value: 81.5135618083407
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts15-sts
|
|
name: MTEB STS15
|
|
config: default
|
|
split: test
|
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 85.46366618397936
|
|
- type: cos_sim_spearman
|
|
value: 86.96566013336908
|
|
- type: euclidean_pearson
|
|
value: 86.62651697548931
|
|
- type: euclidean_spearman
|
|
value: 86.96565526364454
|
|
- type: manhattan_pearson
|
|
value: 86.58812160258009
|
|
- type: manhattan_spearman
|
|
value: 86.9336484321288
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts16-sts
|
|
name: MTEB STS16
|
|
config: default
|
|
split: test
|
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 82.51858358641559
|
|
- type: cos_sim_spearman
|
|
value: 84.7652527954999
|
|
- type: euclidean_pearson
|
|
value: 84.23914783766861
|
|
- type: euclidean_spearman
|
|
value: 84.7652527954999
|
|
- type: manhattan_pearson
|
|
value: 84.22749648503171
|
|
- type: manhattan_spearman
|
|
value: 84.74527996746386
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts17-crosslingual-sts
|
|
name: MTEB STS17 (en-en)
|
|
config: en-en
|
|
split: test
|
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 87.28026563313065
|
|
- type: cos_sim_spearman
|
|
value: 87.46928143824915
|
|
- type: euclidean_pearson
|
|
value: 88.30558762000372
|
|
- type: euclidean_spearman
|
|
value: 87.46928143824915
|
|
- type: manhattan_pearson
|
|
value: 88.10513330809331
|
|
- type: manhattan_spearman
|
|
value: 87.21069787834173
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/sts22-crosslingual-sts
|
|
name: MTEB STS22 (en)
|
|
config: en
|
|
split: test
|
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 62.376497134587375
|
|
- type: cos_sim_spearman
|
|
value: 65.0159550112516
|
|
- type: euclidean_pearson
|
|
value: 65.64572120879598
|
|
- type: euclidean_spearman
|
|
value: 65.0159550112516
|
|
- type: manhattan_pearson
|
|
value: 65.88143604989976
|
|
- type: manhattan_spearman
|
|
value: 65.17547297222434
|
|
- task:
|
|
type: STS
|
|
dataset:
|
|
type: mteb/stsbenchmark-sts
|
|
name: MTEB STSBenchmark
|
|
config: default
|
|
split: test
|
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 84.22876368947644
|
|
- type: cos_sim_spearman
|
|
value: 85.46935577445318
|
|
- type: euclidean_pearson
|
|
value: 85.32830231392005
|
|
- type: euclidean_spearman
|
|
value: 85.46935577445318
|
|
- type: manhattan_pearson
|
|
value: 85.30353211758495
|
|
- type: manhattan_spearman
|
|
value: 85.42821085956945
|
|
- task:
|
|
type: Reranking
|
|
dataset:
|
|
type: mteb/scidocs-reranking
|
|
name: MTEB SciDocsRR
|
|
config: default
|
|
split: test
|
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
|
metrics:
|
|
- type: map
|
|
value: 80.60986667767133
|
|
- type: mrr
|
|
value: 94.29432314236236
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: scifact
|
|
name: MTEB SciFact
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 54.528
|
|
- type: map_at_10
|
|
value: 65.187
|
|
- type: map_at_100
|
|
value: 65.62599999999999
|
|
- type: map_at_1000
|
|
value: 65.657
|
|
- type: map_at_3
|
|
value: 62.352
|
|
- type: map_at_5
|
|
value: 64.025
|
|
- type: mrr_at_1
|
|
value: 57.333
|
|
- type: mrr_at_10
|
|
value: 66.577
|
|
- type: mrr_at_100
|
|
value: 66.88
|
|
- type: mrr_at_1000
|
|
value: 66.908
|
|
- type: mrr_at_3
|
|
value: 64.556
|
|
- type: mrr_at_5
|
|
value: 65.739
|
|
- type: ndcg_at_1
|
|
value: 57.333
|
|
- type: ndcg_at_10
|
|
value: 70.275
|
|
- type: ndcg_at_100
|
|
value: 72.136
|
|
- type: ndcg_at_1000
|
|
value: 72.963
|
|
- type: ndcg_at_3
|
|
value: 65.414
|
|
- type: ndcg_at_5
|
|
value: 67.831
|
|
- type: precision_at_1
|
|
value: 57.333
|
|
- type: precision_at_10
|
|
value: 9.5
|
|
- type: precision_at_100
|
|
value: 1.057
|
|
- type: precision_at_1000
|
|
value: 0.11199999999999999
|
|
- type: precision_at_3
|
|
value: 25.778000000000002
|
|
- type: precision_at_5
|
|
value: 17.2
|
|
- type: recall_at_1
|
|
value: 54.528
|
|
- type: recall_at_10
|
|
value: 84.356
|
|
- type: recall_at_100
|
|
value: 92.833
|
|
- type: recall_at_1000
|
|
value: 99.333
|
|
- type: recall_at_3
|
|
value: 71.283
|
|
- type: recall_at_5
|
|
value: 77.14999999999999
|
|
- task:
|
|
type: PairClassification
|
|
dataset:
|
|
type: mteb/sprintduplicatequestions-pairclassification
|
|
name: MTEB SprintDuplicateQuestions
|
|
config: default
|
|
split: test
|
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
|
metrics:
|
|
- type: cos_sim_accuracy
|
|
value: 99.74158415841585
|
|
- type: cos_sim_ap
|
|
value: 92.90048959850317
|
|
- type: cos_sim_f1
|
|
value: 86.35650810245687
|
|
- type: cos_sim_precision
|
|
value: 90.4709748083242
|
|
- type: cos_sim_recall
|
|
value: 82.6
|
|
- type: dot_accuracy
|
|
value: 99.74158415841585
|
|
- type: dot_ap
|
|
value: 92.90048959850317
|
|
- type: dot_f1
|
|
value: 86.35650810245687
|
|
- type: dot_precision
|
|
value: 90.4709748083242
|
|
- type: dot_recall
|
|
value: 82.6
|
|
- type: euclidean_accuracy
|
|
value: 99.74158415841585
|
|
- type: euclidean_ap
|
|
value: 92.90048959850317
|
|
- type: euclidean_f1
|
|
value: 86.35650810245687
|
|
- type: euclidean_precision
|
|
value: 90.4709748083242
|
|
- type: euclidean_recall
|
|
value: 82.6
|
|
- type: manhattan_accuracy
|
|
value: 99.74158415841585
|
|
- type: manhattan_ap
|
|
value: 92.87344692947894
|
|
- type: manhattan_f1
|
|
value: 86.38497652582159
|
|
- type: manhattan_precision
|
|
value: 90.29443838604145
|
|
- type: manhattan_recall
|
|
value: 82.8
|
|
- type: max_accuracy
|
|
value: 99.74158415841585
|
|
- type: max_ap
|
|
value: 92.90048959850317
|
|
- type: max_f1
|
|
value: 86.38497652582159
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/stackexchange-clustering
|
|
name: MTEB StackExchangeClustering
|
|
config: default
|
|
split: test
|
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
|
metrics:
|
|
- type: v_measure
|
|
value: 63.191648770424216
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/stackexchange-clustering-p2p
|
|
name: MTEB StackExchangeClusteringP2P
|
|
config: default
|
|
split: test
|
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
|
metrics:
|
|
- type: v_measure
|
|
value: 34.02944668730218
|
|
- task:
|
|
type: Reranking
|
|
dataset:
|
|
type: mteb/stackoverflowdupquestions-reranking
|
|
name: MTEB StackOverflowDupQuestions
|
|
config: default
|
|
split: test
|
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
|
metrics:
|
|
- type: map
|
|
value: 50.466386167525265
|
|
- type: mrr
|
|
value: 51.19071492233257
|
|
- task:
|
|
type: Summarization
|
|
dataset:
|
|
type: mteb/summeval
|
|
name: MTEB SummEval
|
|
config: default
|
|
split: test
|
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
|
metrics:
|
|
- type: cos_sim_pearson
|
|
value: 30.198022505886435
|
|
- type: cos_sim_spearman
|
|
value: 30.40170257939193
|
|
- type: dot_pearson
|
|
value: 30.198015316402614
|
|
- type: dot_spearman
|
|
value: 30.40170257939193
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: trec-covid
|
|
name: MTEB TRECCOVID
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 0.242
|
|
- type: map_at_10
|
|
value: 2.17
|
|
- type: map_at_100
|
|
value: 12.221
|
|
- type: map_at_1000
|
|
value: 28.63
|
|
- type: map_at_3
|
|
value: 0.728
|
|
- type: map_at_5
|
|
value: 1.185
|
|
- type: mrr_at_1
|
|
value: 94
|
|
- type: mrr_at_10
|
|
value: 97
|
|
- type: mrr_at_100
|
|
value: 97
|
|
- type: mrr_at_1000
|
|
value: 97
|
|
- type: mrr_at_3
|
|
value: 97
|
|
- type: mrr_at_5
|
|
value: 97
|
|
- type: ndcg_at_1
|
|
value: 89
|
|
- type: ndcg_at_10
|
|
value: 82.30499999999999
|
|
- type: ndcg_at_100
|
|
value: 61.839999999999996
|
|
- type: ndcg_at_1000
|
|
value: 53.381
|
|
- type: ndcg_at_3
|
|
value: 88.877
|
|
- type: ndcg_at_5
|
|
value: 86.05199999999999
|
|
- type: precision_at_1
|
|
value: 94
|
|
- type: precision_at_10
|
|
value: 87
|
|
- type: precision_at_100
|
|
value: 63.38
|
|
- type: precision_at_1000
|
|
value: 23.498
|
|
- type: precision_at_3
|
|
value: 94
|
|
- type: precision_at_5
|
|
value: 92
|
|
- type: recall_at_1
|
|
value: 0.242
|
|
- type: recall_at_10
|
|
value: 2.302
|
|
- type: recall_at_100
|
|
value: 14.979000000000001
|
|
- type: recall_at_1000
|
|
value: 49.638
|
|
- type: recall_at_3
|
|
value: 0.753
|
|
- type: recall_at_5
|
|
value: 1.226
|
|
- task:
|
|
type: Retrieval
|
|
dataset:
|
|
type: webis-touche2020
|
|
name: MTEB Touche2020
|
|
config: default
|
|
split: test
|
|
revision: None
|
|
metrics:
|
|
- type: map_at_1
|
|
value: 3.006
|
|
- type: map_at_10
|
|
value: 11.805
|
|
- type: map_at_100
|
|
value: 18.146
|
|
- type: map_at_1000
|
|
value: 19.788
|
|
- type: map_at_3
|
|
value: 5.914
|
|
- type: map_at_5
|
|
value: 8.801
|
|
- type: mrr_at_1
|
|
value: 40.816
|
|
- type: mrr_at_10
|
|
value: 56.36600000000001
|
|
- type: mrr_at_100
|
|
value: 56.721999999999994
|
|
- type: mrr_at_1000
|
|
value: 56.721999999999994
|
|
- type: mrr_at_3
|
|
value: 52.041000000000004
|
|
- type: mrr_at_5
|
|
value: 54.796
|
|
- type: ndcg_at_1
|
|
value: 37.755
|
|
- type: ndcg_at_10
|
|
value: 29.863
|
|
- type: ndcg_at_100
|
|
value: 39.571
|
|
- type: ndcg_at_1000
|
|
value: 51.385999999999996
|
|
- type: ndcg_at_3
|
|
value: 32.578
|
|
- type: ndcg_at_5
|
|
value: 32.351
|
|
- type: precision_at_1
|
|
value: 40.816
|
|
- type: precision_at_10
|
|
value: 26.531
|
|
- type: precision_at_100
|
|
value: 7.796
|
|
- type: precision_at_1000
|
|
value: 1.555
|
|
- type: precision_at_3
|
|
value: 32.653
|
|
- type: precision_at_5
|
|
value: 33.061
|
|
- type: recall_at_1
|
|
value: 3.006
|
|
- type: recall_at_10
|
|
value: 18.738
|
|
- type: recall_at_100
|
|
value: 48.058
|
|
- type: recall_at_1000
|
|
value: 83.41300000000001
|
|
- type: recall_at_3
|
|
value: 7.166
|
|
- type: recall_at_5
|
|
value: 12.102
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/toxic_conversations_50k
|
|
name: MTEB ToxicConversationsClassification
|
|
config: default
|
|
split: test
|
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
|
metrics:
|
|
- type: accuracy
|
|
value: 71.4178
|
|
- type: ap
|
|
value: 14.648781342150446
|
|
- type: f1
|
|
value: 55.07299194946378
|
|
- task:
|
|
type: Classification
|
|
dataset:
|
|
type: mteb/tweet_sentiment_extraction
|
|
name: MTEB TweetSentimentExtractionClassification
|
|
config: default
|
|
split: test
|
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
|
metrics:
|
|
- type: accuracy
|
|
value: 60.919637804187886
|
|
- type: f1
|
|
value: 61.24122013967399
|
|
- task:
|
|
type: Clustering
|
|
dataset:
|
|
type: mteb/twentynewsgroups-clustering
|
|
name: MTEB TwentyNewsgroupsClustering
|
|
config: default
|
|
split: test
|
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
|
metrics:
|
|
- type: v_measure
|
|
value: 49.207896583685695
|
|
- task:
|
|
type: PairClassification
|
|
dataset:
|
|
type: mteb/twittersemeval2015-pairclassification
|
|
name: MTEB TwitterSemEval2015
|
|
config: default
|
|
split: test
|
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
|
metrics:
|
|
- type: cos_sim_accuracy
|
|
value: 86.23114978840078
|
|
- type: cos_sim_ap
|
|
value: 74.26624727825818
|
|
- type: cos_sim_f1
|
|
value: 68.72377190817083
|
|
- type: cos_sim_precision
|
|
value: 64.56400742115028
|
|
- type: cos_sim_recall
|
|
value: 73.45646437994723
|
|
- type: dot_accuracy
|
|
value: 86.23114978840078
|
|
- type: dot_ap
|
|
value: 74.26624032659652
|
|
- type: dot_f1
|
|
value: 68.72377190817083
|
|
- type: dot_precision
|
|
value: 64.56400742115028
|
|
- type: dot_recall
|
|
value: 73.45646437994723
|
|
- type: euclidean_accuracy
|
|
value: 86.23114978840078
|
|
- type: euclidean_ap
|
|
value: 74.26624714480556
|
|
- type: euclidean_f1
|
|
value: 68.72377190817083
|
|
- type: euclidean_precision
|
|
value: 64.56400742115028
|
|
- type: euclidean_recall
|
|
value: 73.45646437994723
|
|
- type: manhattan_accuracy
|
|
value: 86.16558383501221
|
|
- type: manhattan_ap
|
|
value: 74.2091943976357
|
|
- type: manhattan_f1
|
|
value: 68.64221520524654
|
|
- type: manhattan_precision
|
|
value: 63.59135913591359
|
|
- type: manhattan_recall
|
|
value: 74.5646437994723
|
|
- type: max_accuracy
|
|
value: 86.23114978840078
|
|
- type: max_ap
|
|
value: 74.26624727825818
|
|
- type: max_f1
|
|
value: 68.72377190817083
|
|
- task:
|
|
type: PairClassification
|
|
dataset:
|
|
type: mteb/twitterurlcorpus-pairclassification
|
|
name: MTEB TwitterURLCorpus
|
|
config: default
|
|
split: test
|
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
|
metrics:
|
|
- type: cos_sim_accuracy
|
|
value: 89.3681841114604
|
|
- type: cos_sim_ap
|
|
value: 86.65166387498546
|
|
- type: cos_sim_f1
|
|
value: 79.02581944698774
|
|
- type: cos_sim_precision
|
|
value: 75.35796605434099
|
|
- type: cos_sim_recall
|
|
value: 83.06898675700647
|
|
- type: dot_accuracy
|
|
value: 89.3681841114604
|
|
- type: dot_ap
|
|
value: 86.65166019802056
|
|
- type: dot_f1
|
|
value: 79.02581944698774
|
|
- type: dot_precision
|
|
value: 75.35796605434099
|
|
- type: dot_recall
|
|
value: 83.06898675700647
|
|
- type: euclidean_accuracy
|
|
value: 89.3681841114604
|
|
- type: euclidean_ap
|
|
value: 86.65166462876266
|
|
- type: euclidean_f1
|
|
value: 79.02581944698774
|
|
- type: euclidean_precision
|
|
value: 75.35796605434099
|
|
- type: euclidean_recall
|
|
value: 83.06898675700647
|
|
- type: manhattan_accuracy
|
|
value: 89.36624364497226
|
|
- type: manhattan_ap
|
|
value: 86.65076471274106
|
|
- type: manhattan_f1
|
|
value: 79.07408783532733
|
|
- type: manhattan_precision
|
|
value: 76.41102972856527
|
|
- type: manhattan_recall
|
|
value: 81.92947336002464
|
|
- type: max_accuracy
|
|
value: 89.3681841114604
|
|
- type: max_ap
|
|
value: 86.65166462876266
|
|
- type: max_f1
|
|
value: 79.07408783532733
|
|
license: apache-2.0
|
|
language:
|
|
- en
|
|
---
|
|
|
|
# nomic-embed-text-v1.5: Resizable Production Embeddings with Matryoshka Representation Learning
|
|
|
|
**Exciting Update!**: `nomic-embed-text-v1.5` is now multimodal! [nomic-embed-vision-v1](https://huggingface.co./nomic-ai/nomic-embed-vision-v1.5) is aligned to the embedding space of `nomic-embed-text-v1.5`, meaning any text embedding is multimodal!
|
|
|
|
## Usage
|
|
|
|
**Important**: the text prompt *must* include a *task instruction prefix*, instructing the model which task is being performed.
|
|
|
|
For example, if you are implementing a RAG application, you embed your documents as `search_document: <text here>` and embed your user queries as `search_query: <text here>`.
|
|
|
|
## Task instruction prefixes
|
|
|
|
### `search_document`
|
|
|
|
#### Purpose: embed texts as documents from a dataset
|
|
|
|
This prefix is used for embedding texts as documents, for example as documents for a RAG index.
|
|
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
|
|
sentences = ['search_document: TSNE is a dimensionality reduction algorithm created by Laurens van Der Maaten']
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings)
|
|
```
|
|
|
|
### `search_query`
|
|
|
|
#### Purpose: embed texts as questions to answer
|
|
|
|
This prefix is used for embedding texts as questions that documents from a dataset could resolve, for example as queries to be answered by a RAG application.
|
|
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
|
|
sentences = ['search_query: Who is Laurens van Der Maaten?']
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings)
|
|
```
|
|
|
|
### `clustering`
|
|
|
|
#### Purpose: embed texts to group them into clusters
|
|
|
|
This prefix is used for embedding texts in order to group them into clusters, discover common topics, or remove semantic duplicates.
|
|
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
|
|
sentences = ['clustering: the quick brown fox']
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings)
|
|
```
|
|
|
|
### `classification`
|
|
|
|
#### Purpose: embed texts to classify them
|
|
|
|
This prefix is used for embedding texts into vectors that will be used as features for a classification model
|
|
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
|
|
sentences = ['classification: the quick brown fox']
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings)
|
|
```
|
|
|
|
|
|
### Sentence Transformers
|
|
```python
|
|
import torch.nn.functional as F
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
matryoshka_dim = 512
|
|
|
|
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True)
|
|
sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?']
|
|
embeddings = model.encode(sentences, convert_to_tensor=True)
|
|
embeddings = F.layer_norm(embeddings, normalized_shape=(embeddings.shape[1],))
|
|
embeddings = embeddings[:, :matryoshka_dim]
|
|
embeddings = F.normalize(embeddings, p=2, dim=1)
|
|
print(embeddings)
|
|
```
|
|
|
|
### Transformers
|
|
|
|
```diff
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from transformers import AutoTokenizer, AutoModel
|
|
|
|
def mean_pooling(model_output, attention_mask):
|
|
token_embeddings = model_output[0]
|
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
|
|
|
sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?']
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
|
model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True, safe_serialization=True)
|
|
model.eval()
|
|
|
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
|
+ matryoshka_dim = 512
|
|
|
|
with torch.no_grad():
|
|
model_output = model(**encoded_input)
|
|
|
|
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
|
+ embeddings = F.layer_norm(embeddings, normalized_shape=(embeddings.shape[1],))
|
|
+ embeddings = embeddings[:, :matryoshka_dim]
|
|
embeddings = F.normalize(embeddings, p=2, dim=1)
|
|
print(embeddings)
|
|
```
|
|
|
|
The model natively supports scaling of the sequence length past 2048 tokens. To do so,
|
|
|
|
```diff
|
|
- tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
|
+ tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', model_max_length=8192)
|
|
|
|
|
|
- model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True)
|
|
+ model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True, rotary_scaling_factor=2)
|
|
```
|
|
|
|
### Transformers.js
|
|
|
|
```js
|
|
import { pipeline, layer_norm } from '@xenova/transformers';
|
|
|
|
// Create a feature extraction pipeline
|
|
const extractor = await pipeline('feature-extraction', 'nomic-ai/nomic-embed-text-v1.5', {
|
|
quantized: false, // Comment out this line to use the quantized version
|
|
});
|
|
|
|
// Define sentences
|
|
const texts = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?'];
|
|
|
|
// Compute sentence embeddings
|
|
let embeddings = await extractor(texts, { pooling: 'mean' });
|
|
console.log(embeddings); // Tensor of shape [2, 768]
|
|
|
|
const matryoshka_dim = 512;
|
|
embeddings = layer_norm(embeddings, [embeddings.dims[1]])
|
|
.slice(null, [0, matryoshka_dim])
|
|
.normalize(2, -1);
|
|
console.log(embeddings.tolist());
|
|
```
|
|
|
|
|
|
## Nomic API
|
|
|
|
The easiest way to use Nomic Embed is through the Nomic Embedding API.
|
|
|
|
Generating embeddings with the `nomic` Python client is as easy as
|
|
|
|
```python
|
|
from nomic import embed
|
|
|
|
output = embed.text(
|
|
texts=['Nomic Embedding API', '#keepAIOpen'],
|
|
model='nomic-embed-text-v1.5',
|
|
task_type='search_document',
|
|
dimensionality=256,
|
|
)
|
|
|
|
print(output)
|
|
```
|
|
|
|
For more information, see the [API reference](https://docs.nomic.ai/reference/endpoints/nomic-embed-text)
|
|
|
|
|
|
## Infinity
|
|
|
|
Usage with [Infinity](https://github.com/michaelfeil/infinity).
|
|
|
|
```bash
|
|
docker run --gpus all -v $PWD/data:/app/.cache -e HF_TOKEN=$HF_TOKEN -p "7997":"7997" \
|
|
michaelf34/infinity:0.0.70 \
|
|
v2 --model-id nomic-ai/nomic-embed-text-v1.5 --revision "main" --dtype float16 --batch-size 8 --engine torch --port 7997 --no-bettertransformer
|
|
```
|
|
|
|
## Adjusting Dimensionality
|
|
|
|
`nomic-embed-text-v1.5` is an improvement upon [Nomic Embed](https://huggingface.co./nomic-ai/nomic-embed-text-v1) that utilizes [Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147) which gives developers the flexibility to trade off the embedding size for a negligible reduction in performance.
|
|
|
|
|
|
| Name | SeqLen | Dimension | MTEB |
|
|
| :-------------------------------:| :----- | :-------- | :------: |
|
|
| nomic-embed-text-v1 | 8192 | 768 | **62.39** |
|
|
| nomic-embed-text-v1.5 | 8192 | 768 | 62.28 |
|
|
| nomic-embed-text-v1.5 | 8192 | 512 | 61.96 |
|
|
| nomic-embed-text-v1.5 | 8192 | 256 | 61.04 |
|
|
| nomic-embed-text-v1.5 | 8192 | 128 | 59.34 |
|
|
| nomic-embed-text-v1.5 | 8192 | 64 | 56.10 |
|
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/607997c83a565c15675055b3/CRnaHV-c2wMUMZKw72q85.png)
|
|
|
|
## Training
|
|
Click the Nomic Atlas map below to visualize a 5M sample of our contrastive pretraining data!
|
|
|
|
[![image/webp](https://cdn-uploads.huggingface.co/production/uploads/607997c83a565c15675055b3/pjhJhuNyRfPagRd_c_iUz.webp)](https://atlas.nomic.ai/map/nomic-text-embed-v1-5m-sample)
|
|
|
|
We train our embedder using a multi-stage training pipeline. Starting from a long-context [BERT model](https://huggingface.co./nomic-ai/nomic-bert-2048),
|
|
the first unsupervised contrastive stage trains on a dataset generated from weakly related text pairs, such as question-answer pairs from forums like StackExchange and Quora, title-body pairs from Amazon reviews, and summarizations from news articles.
|
|
|
|
In the second finetuning stage, higher quality labeled datasets such as search queries and answers from web searches are leveraged. Data curation and hard-example mining is crucial in this stage.
|
|
|
|
For more details, see the Nomic Embed [Technical Report](https://static.nomic.ai/reports/2024_Nomic_Embed_Text_Technical_Report.pdf) and corresponding [blog post](https://blog.nomic.ai/posts/nomic-embed-matryoshka).
|
|
|
|
Training data to train the models is released in its entirety. For more details, see the `contrastors` [repository](https://github.com/nomic-ai/contrastors)
|
|
|
|
|
|
# Join the Nomic Community
|
|
|
|
- Nomic: [https://nomic.ai](https://nomic.ai)
|
|
- Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8)
|
|
- Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai)
|
|
|
|
|
|
# Citation
|
|
|
|
If you find the model, dataset, or training code useful, please cite our work
|
|
|
|
```bibtex
|
|
@misc{nussbaum2024nomic,
|
|
title={Nomic Embed: Training a Reproducible Long Context Text Embedder},
|
|
author={Zach Nussbaum and John X. Morris and Brandon Duderstadt and Andriy Mulyar},
|
|
year={2024},
|
|
eprint={2402.01613},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CL}
|
|
}
|
|
``` |