Upload 13 files
Browse files- 1_Pooling/config.json +9 -0
- README.md +2848 -0
- config.json +57 -0
- config_sentence_transformers.json +7 -0
- model.safetensors +3 -0
- modules.json +14 -0
- onnx/model.onnx +3 -0
- onnx/model_quantized.onnx +3 -0
- sentence_bert_config.json +7 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +55 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false
|
9 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,2851 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: sentence-transformers
|
3 |
+
pipeline_tag: sentence-similarity
|
4 |
+
tags:
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- mteb
|
8 |
+
- transformers
|
9 |
+
- transformers.js
|
10 |
+
model-index:
|
11 |
+
- name: epoch_0_model
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
type: Classification
|
15 |
+
dataset:
|
16 |
+
type: mteb/amazon_counterfactual
|
17 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
18 |
+
config: en
|
19 |
+
split: test
|
20 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
21 |
+
metrics:
|
22 |
+
- type: accuracy
|
23 |
+
value: 75.20895522388058
|
24 |
+
- type: ap
|
25 |
+
value: 38.57605549557802
|
26 |
+
- type: f1
|
27 |
+
value: 69.35586565857854
|
28 |
+
- task:
|
29 |
+
type: Classification
|
30 |
+
dataset:
|
31 |
+
type: mteb/amazon_polarity
|
32 |
+
name: MTEB AmazonPolarityClassification
|
33 |
+
config: default
|
34 |
+
split: test
|
35 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
36 |
+
metrics:
|
37 |
+
- type: accuracy
|
38 |
+
value: 91.8144
|
39 |
+
- type: ap
|
40 |
+
value: 88.65222882032363
|
41 |
+
- type: f1
|
42 |
+
value: 91.80426301643274
|
43 |
+
- task:
|
44 |
+
type: Classification
|
45 |
+
dataset:
|
46 |
+
type: mteb/amazon_reviews_multi
|
47 |
+
name: MTEB AmazonReviewsClassification (en)
|
48 |
+
config: en
|
49 |
+
split: test
|
50 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
51 |
+
metrics:
|
52 |
+
- type: accuracy
|
53 |
+
value: 47.162000000000006
|
54 |
+
- type: f1
|
55 |
+
value: 46.59329642263158
|
56 |
+
- task:
|
57 |
+
type: Retrieval
|
58 |
+
dataset:
|
59 |
+
type: arguana
|
60 |
+
name: MTEB ArguAna
|
61 |
+
config: default
|
62 |
+
split: test
|
63 |
+
revision: None
|
64 |
+
metrics:
|
65 |
+
- type: map_at_1
|
66 |
+
value: 24.253
|
67 |
+
- type: map_at_10
|
68 |
+
value: 38.962
|
69 |
+
- type: map_at_100
|
70 |
+
value: 40.081
|
71 |
+
- type: map_at_1000
|
72 |
+
value: 40.089000000000006
|
73 |
+
- type: map_at_3
|
74 |
+
value: 33.499
|
75 |
+
- type: map_at_5
|
76 |
+
value: 36.351
|
77 |
+
- type: mrr_at_1
|
78 |
+
value: 24.609
|
79 |
+
- type: mrr_at_10
|
80 |
+
value: 39.099000000000004
|
81 |
+
- type: mrr_at_100
|
82 |
+
value: 40.211000000000006
|
83 |
+
- type: mrr_at_1000
|
84 |
+
value: 40.219
|
85 |
+
- type: mrr_at_3
|
86 |
+
value: 33.677
|
87 |
+
- type: mrr_at_5
|
88 |
+
value: 36.469
|
89 |
+
- type: ndcg_at_1
|
90 |
+
value: 24.253
|
91 |
+
- type: ndcg_at_10
|
92 |
+
value: 48.010999999999996
|
93 |
+
- type: ndcg_at_100
|
94 |
+
value: 52.756
|
95 |
+
- type: ndcg_at_1000
|
96 |
+
value: 52.964999999999996
|
97 |
+
- type: ndcg_at_3
|
98 |
+
value: 36.564
|
99 |
+
- type: ndcg_at_5
|
100 |
+
value: 41.711999999999996
|
101 |
+
- type: precision_at_1
|
102 |
+
value: 24.253
|
103 |
+
- type: precision_at_10
|
104 |
+
value: 7.738
|
105 |
+
- type: precision_at_100
|
106 |
+
value: 0.98
|
107 |
+
- type: precision_at_1000
|
108 |
+
value: 0.1
|
109 |
+
- type: precision_at_3
|
110 |
+
value: 15.149000000000001
|
111 |
+
- type: precision_at_5
|
112 |
+
value: 11.593
|
113 |
+
- type: recall_at_1
|
114 |
+
value: 24.253
|
115 |
+
- type: recall_at_10
|
116 |
+
value: 77.383
|
117 |
+
- type: recall_at_100
|
118 |
+
value: 98.009
|
119 |
+
- type: recall_at_1000
|
120 |
+
value: 99.644
|
121 |
+
- type: recall_at_3
|
122 |
+
value: 45.448
|
123 |
+
- type: recall_at_5
|
124 |
+
value: 57.965999999999994
|
125 |
+
- task:
|
126 |
+
type: Clustering
|
127 |
+
dataset:
|
128 |
+
type: mteb/arxiv-clustering-p2p
|
129 |
+
name: MTEB ArxivClusteringP2P
|
130 |
+
config: default
|
131 |
+
split: test
|
132 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
133 |
+
metrics:
|
134 |
+
- type: v_measure
|
135 |
+
value: 45.69069567851087
|
136 |
+
- task:
|
137 |
+
type: Clustering
|
138 |
+
dataset:
|
139 |
+
type: mteb/arxiv-clustering-s2s
|
140 |
+
name: MTEB ArxivClusteringS2S
|
141 |
+
config: default
|
142 |
+
split: test
|
143 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
144 |
+
metrics:
|
145 |
+
- type: v_measure
|
146 |
+
value: 36.35185490976283
|
147 |
+
- task:
|
148 |
+
type: Reranking
|
149 |
+
dataset:
|
150 |
+
type: mteb/askubuntudupquestions-reranking
|
151 |
+
name: MTEB AskUbuntuDupQuestions
|
152 |
+
config: default
|
153 |
+
split: test
|
154 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
155 |
+
metrics:
|
156 |
+
- type: map
|
157 |
+
value: 61.71274951450321
|
158 |
+
- type: mrr
|
159 |
+
value: 76.06032625423207
|
160 |
+
- task:
|
161 |
+
type: STS
|
162 |
+
dataset:
|
163 |
+
type: mteb/biosses-sts
|
164 |
+
name: MTEB BIOSSES
|
165 |
+
config: default
|
166 |
+
split: test
|
167 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
168 |
+
metrics:
|
169 |
+
- type: cos_sim_pearson
|
170 |
+
value: 86.73980520022269
|
171 |
+
- type: cos_sim_spearman
|
172 |
+
value: 84.24649792685918
|
173 |
+
- type: euclidean_pearson
|
174 |
+
value: 85.85197641158186
|
175 |
+
- type: euclidean_spearman
|
176 |
+
value: 84.24649792685918
|
177 |
+
- type: manhattan_pearson
|
178 |
+
value: 86.26809552711346
|
179 |
+
- type: manhattan_spearman
|
180 |
+
value: 84.56397504030865
|
181 |
+
- task:
|
182 |
+
type: Classification
|
183 |
+
dataset:
|
184 |
+
type: mteb/banking77
|
185 |
+
name: MTEB Banking77Classification
|
186 |
+
config: default
|
187 |
+
split: test
|
188 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
189 |
+
metrics:
|
190 |
+
- type: accuracy
|
191 |
+
value: 84.25324675324674
|
192 |
+
- type: f1
|
193 |
+
value: 84.17872280892557
|
194 |
+
- task:
|
195 |
+
type: Clustering
|
196 |
+
dataset:
|
197 |
+
type: mteb/biorxiv-clustering-p2p
|
198 |
+
name: MTEB BiorxivClusteringP2P
|
199 |
+
config: default
|
200 |
+
split: test
|
201 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
202 |
+
metrics:
|
203 |
+
- type: v_measure
|
204 |
+
value: 38.770253446400886
|
205 |
+
- task:
|
206 |
+
type: Clustering
|
207 |
+
dataset:
|
208 |
+
type: mteb/biorxiv-clustering-s2s
|
209 |
+
name: MTEB BiorxivClusteringS2S
|
210 |
+
config: default
|
211 |
+
split: test
|
212 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
213 |
+
metrics:
|
214 |
+
- type: v_measure
|
215 |
+
value: 32.94307095497281
|
216 |
+
- task:
|
217 |
+
type: Retrieval
|
218 |
+
dataset:
|
219 |
+
type: BeIR/cqadupstack
|
220 |
+
name: MTEB CQADupstackAndroidRetrieval
|
221 |
+
config: default
|
222 |
+
split: test
|
223 |
+
revision: None
|
224 |
+
metrics:
|
225 |
+
- type: map_at_1
|
226 |
+
value: 32.164
|
227 |
+
- type: map_at_10
|
228 |
+
value: 42.641
|
229 |
+
- type: map_at_100
|
230 |
+
value: 43.947
|
231 |
+
- type: map_at_1000
|
232 |
+
value: 44.074999999999996
|
233 |
+
- type: map_at_3
|
234 |
+
value: 39.592
|
235 |
+
- type: map_at_5
|
236 |
+
value: 41.204
|
237 |
+
- type: mrr_at_1
|
238 |
+
value: 39.628
|
239 |
+
- type: mrr_at_10
|
240 |
+
value: 48.625
|
241 |
+
- type: mrr_at_100
|
242 |
+
value: 49.368
|
243 |
+
- type: mrr_at_1000
|
244 |
+
value: 49.413000000000004
|
245 |
+
- type: mrr_at_3
|
246 |
+
value: 46.400000000000006
|
247 |
+
- type: mrr_at_5
|
248 |
+
value: 47.68
|
249 |
+
- type: ndcg_at_1
|
250 |
+
value: 39.628
|
251 |
+
- type: ndcg_at_10
|
252 |
+
value: 48.564
|
253 |
+
- type: ndcg_at_100
|
254 |
+
value: 53.507000000000005
|
255 |
+
- type: ndcg_at_1000
|
256 |
+
value: 55.635999999999996
|
257 |
+
- type: ndcg_at_3
|
258 |
+
value: 44.471
|
259 |
+
- type: ndcg_at_5
|
260 |
+
value: 46.137
|
261 |
+
- type: precision_at_1
|
262 |
+
value: 39.628
|
263 |
+
- type: precision_at_10
|
264 |
+
value: 8.856
|
265 |
+
- type: precision_at_100
|
266 |
+
value: 1.429
|
267 |
+
- type: precision_at_1000
|
268 |
+
value: 0.191
|
269 |
+
- type: precision_at_3
|
270 |
+
value: 21.268
|
271 |
+
- type: precision_at_5
|
272 |
+
value: 14.649000000000001
|
273 |
+
- type: recall_at_1
|
274 |
+
value: 32.164
|
275 |
+
- type: recall_at_10
|
276 |
+
value: 59.609
|
277 |
+
- type: recall_at_100
|
278 |
+
value: 80.521
|
279 |
+
- type: recall_at_1000
|
280 |
+
value: 94.245
|
281 |
+
- type: recall_at_3
|
282 |
+
value: 46.521
|
283 |
+
- type: recall_at_5
|
284 |
+
value: 52.083999999999996
|
285 |
+
- task:
|
286 |
+
type: Retrieval
|
287 |
+
dataset:
|
288 |
+
type: BeIR/cqadupstack
|
289 |
+
name: MTEB CQADupstackEnglishRetrieval
|
290 |
+
config: default
|
291 |
+
split: test
|
292 |
+
revision: None
|
293 |
+
metrics:
|
294 |
+
- type: map_at_1
|
295 |
+
value: 31.526
|
296 |
+
- type: map_at_10
|
297 |
+
value: 41.581
|
298 |
+
- type: map_at_100
|
299 |
+
value: 42.815999999999995
|
300 |
+
- type: map_at_1000
|
301 |
+
value: 42.936
|
302 |
+
- type: map_at_3
|
303 |
+
value: 38.605000000000004
|
304 |
+
- type: map_at_5
|
305 |
+
value: 40.351
|
306 |
+
- type: mrr_at_1
|
307 |
+
value: 39.489999999999995
|
308 |
+
- type: mrr_at_10
|
309 |
+
value: 47.829
|
310 |
+
- type: mrr_at_100
|
311 |
+
value: 48.512
|
312 |
+
- type: mrr_at_1000
|
313 |
+
value: 48.552
|
314 |
+
- type: mrr_at_3
|
315 |
+
value: 45.754
|
316 |
+
- type: mrr_at_5
|
317 |
+
value: 46.986
|
318 |
+
- type: ndcg_at_1
|
319 |
+
value: 39.489999999999995
|
320 |
+
- type: ndcg_at_10
|
321 |
+
value: 47.269
|
322 |
+
- type: ndcg_at_100
|
323 |
+
value: 51.564
|
324 |
+
- type: ndcg_at_1000
|
325 |
+
value: 53.53099999999999
|
326 |
+
- type: ndcg_at_3
|
327 |
+
value: 43.301
|
328 |
+
- type: ndcg_at_5
|
329 |
+
value: 45.239000000000004
|
330 |
+
- type: precision_at_1
|
331 |
+
value: 39.489999999999995
|
332 |
+
- type: precision_at_10
|
333 |
+
value: 8.93
|
334 |
+
- type: precision_at_100
|
335 |
+
value: 1.415
|
336 |
+
- type: precision_at_1000
|
337 |
+
value: 0.188
|
338 |
+
- type: precision_at_3
|
339 |
+
value: 20.892
|
340 |
+
- type: precision_at_5
|
341 |
+
value: 14.865999999999998
|
342 |
+
- type: recall_at_1
|
343 |
+
value: 31.526
|
344 |
+
- type: recall_at_10
|
345 |
+
value: 56.76
|
346 |
+
- type: recall_at_100
|
347 |
+
value: 75.029
|
348 |
+
- type: recall_at_1000
|
349 |
+
value: 87.491
|
350 |
+
- type: recall_at_3
|
351 |
+
value: 44.786
|
352 |
+
- type: recall_at_5
|
353 |
+
value: 50.254
|
354 |
+
- task:
|
355 |
+
type: Retrieval
|
356 |
+
dataset:
|
357 |
+
type: BeIR/cqadupstack
|
358 |
+
name: MTEB CQADupstackGamingRetrieval
|
359 |
+
config: default
|
360 |
+
split: test
|
361 |
+
revision: None
|
362 |
+
metrics:
|
363 |
+
- type: map_at_1
|
364 |
+
value: 40.987
|
365 |
+
- type: map_at_10
|
366 |
+
value: 52.827
|
367 |
+
- type: map_at_100
|
368 |
+
value: 53.751000000000005
|
369 |
+
- type: map_at_1000
|
370 |
+
value: 53.81
|
371 |
+
- type: map_at_3
|
372 |
+
value: 49.844
|
373 |
+
- type: map_at_5
|
374 |
+
value: 51.473
|
375 |
+
- type: mrr_at_1
|
376 |
+
value: 46.833999999999996
|
377 |
+
- type: mrr_at_10
|
378 |
+
value: 56.389
|
379 |
+
- type: mrr_at_100
|
380 |
+
value: 57.003
|
381 |
+
- type: mrr_at_1000
|
382 |
+
value: 57.034
|
383 |
+
- type: mrr_at_3
|
384 |
+
value: 54.17999999999999
|
385 |
+
- type: mrr_at_5
|
386 |
+
value: 55.486999999999995
|
387 |
+
- type: ndcg_at_1
|
388 |
+
value: 46.833999999999996
|
389 |
+
- type: ndcg_at_10
|
390 |
+
value: 58.372
|
391 |
+
- type: ndcg_at_100
|
392 |
+
value: 62.068
|
393 |
+
- type: ndcg_at_1000
|
394 |
+
value: 63.288
|
395 |
+
- type: ndcg_at_3
|
396 |
+
value: 53.400000000000006
|
397 |
+
- type: ndcg_at_5
|
398 |
+
value: 55.766000000000005
|
399 |
+
- type: precision_at_1
|
400 |
+
value: 46.833999999999996
|
401 |
+
- type: precision_at_10
|
402 |
+
value: 9.191
|
403 |
+
- type: precision_at_100
|
404 |
+
value: 1.192
|
405 |
+
- type: precision_at_1000
|
406 |
+
value: 0.134
|
407 |
+
- type: precision_at_3
|
408 |
+
value: 23.448
|
409 |
+
- type: precision_at_5
|
410 |
+
value: 15.862000000000002
|
411 |
+
- type: recall_at_1
|
412 |
+
value: 40.987
|
413 |
+
- type: recall_at_10
|
414 |
+
value: 71.146
|
415 |
+
- type: recall_at_100
|
416 |
+
value: 87.035
|
417 |
+
- type: recall_at_1000
|
418 |
+
value: 95.633
|
419 |
+
- type: recall_at_3
|
420 |
+
value: 58.025999999999996
|
421 |
+
- type: recall_at_5
|
422 |
+
value: 63.815999999999995
|
423 |
+
- task:
|
424 |
+
type: Retrieval
|
425 |
+
dataset:
|
426 |
+
type: BeIR/cqadupstack
|
427 |
+
name: MTEB CQADupstackGisRetrieval
|
428 |
+
config: default
|
429 |
+
split: test
|
430 |
+
revision: None
|
431 |
+
metrics:
|
432 |
+
- type: map_at_1
|
433 |
+
value: 24.587
|
434 |
+
- type: map_at_10
|
435 |
+
value: 33.114
|
436 |
+
- type: map_at_100
|
437 |
+
value: 34.043
|
438 |
+
- type: map_at_1000
|
439 |
+
value: 34.123999999999995
|
440 |
+
- type: map_at_3
|
441 |
+
value: 30.45
|
442 |
+
- type: map_at_5
|
443 |
+
value: 31.813999999999997
|
444 |
+
- type: mrr_at_1
|
445 |
+
value: 26.554
|
446 |
+
- type: mrr_at_10
|
447 |
+
value: 35.148
|
448 |
+
- type: mrr_at_100
|
449 |
+
value: 35.926
|
450 |
+
- type: mrr_at_1000
|
451 |
+
value: 35.991
|
452 |
+
- type: mrr_at_3
|
453 |
+
value: 32.599000000000004
|
454 |
+
- type: mrr_at_5
|
455 |
+
value: 33.893
|
456 |
+
- type: ndcg_at_1
|
457 |
+
value: 26.554
|
458 |
+
- type: ndcg_at_10
|
459 |
+
value: 38.132
|
460 |
+
- type: ndcg_at_100
|
461 |
+
value: 42.78
|
462 |
+
- type: ndcg_at_1000
|
463 |
+
value: 44.919
|
464 |
+
- type: ndcg_at_3
|
465 |
+
value: 32.833
|
466 |
+
- type: ndcg_at_5
|
467 |
+
value: 35.168
|
468 |
+
- type: precision_at_1
|
469 |
+
value: 26.554
|
470 |
+
- type: precision_at_10
|
471 |
+
value: 5.921
|
472 |
+
- type: precision_at_100
|
473 |
+
value: 0.8659999999999999
|
474 |
+
- type: precision_at_1000
|
475 |
+
value: 0.109
|
476 |
+
- type: precision_at_3
|
477 |
+
value: 13.861
|
478 |
+
- type: precision_at_5
|
479 |
+
value: 9.605
|
480 |
+
- type: recall_at_1
|
481 |
+
value: 24.587
|
482 |
+
- type: recall_at_10
|
483 |
+
value: 51.690000000000005
|
484 |
+
- type: recall_at_100
|
485 |
+
value: 73.428
|
486 |
+
- type: recall_at_1000
|
487 |
+
value: 89.551
|
488 |
+
- type: recall_at_3
|
489 |
+
value: 37.336999999999996
|
490 |
+
- type: recall_at_5
|
491 |
+
value: 43.047000000000004
|
492 |
+
- task:
|
493 |
+
type: Retrieval
|
494 |
+
dataset:
|
495 |
+
type: BeIR/cqadupstack
|
496 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
497 |
+
config: default
|
498 |
+
split: test
|
499 |
+
revision: None
|
500 |
+
metrics:
|
501 |
+
- type: map_at_1
|
502 |
+
value: 16.715
|
503 |
+
- type: map_at_10
|
504 |
+
value: 24.251
|
505 |
+
- type: map_at_100
|
506 |
+
value: 25.326999999999998
|
507 |
+
- type: map_at_1000
|
508 |
+
value: 25.455
|
509 |
+
- type: map_at_3
|
510 |
+
value: 21.912000000000003
|
511 |
+
- type: map_at_5
|
512 |
+
value: 23.257
|
513 |
+
- type: mrr_at_1
|
514 |
+
value: 20.274
|
515 |
+
- type: mrr_at_10
|
516 |
+
value: 28.552
|
517 |
+
- type: mrr_at_100
|
518 |
+
value: 29.42
|
519 |
+
- type: mrr_at_1000
|
520 |
+
value: 29.497
|
521 |
+
- type: mrr_at_3
|
522 |
+
value: 26.14
|
523 |
+
- type: mrr_at_5
|
524 |
+
value: 27.502
|
525 |
+
- type: ndcg_at_1
|
526 |
+
value: 20.274
|
527 |
+
- type: ndcg_at_10
|
528 |
+
value: 29.088
|
529 |
+
- type: ndcg_at_100
|
530 |
+
value: 34.293
|
531 |
+
- type: ndcg_at_1000
|
532 |
+
value: 37.271
|
533 |
+
- type: ndcg_at_3
|
534 |
+
value: 24.708
|
535 |
+
- type: ndcg_at_5
|
536 |
+
value: 26.809
|
537 |
+
- type: precision_at_1
|
538 |
+
value: 20.274
|
539 |
+
- type: precision_at_10
|
540 |
+
value: 5.361
|
541 |
+
- type: precision_at_100
|
542 |
+
value: 0.915
|
543 |
+
- type: precision_at_1000
|
544 |
+
value: 0.13
|
545 |
+
- type: precision_at_3
|
546 |
+
value: 11.733
|
547 |
+
- type: precision_at_5
|
548 |
+
value: 8.556999999999999
|
549 |
+
- type: recall_at_1
|
550 |
+
value: 16.715
|
551 |
+
- type: recall_at_10
|
552 |
+
value: 39.587
|
553 |
+
- type: recall_at_100
|
554 |
+
value: 62.336000000000006
|
555 |
+
- type: recall_at_1000
|
556 |
+
value: 83.453
|
557 |
+
- type: recall_at_3
|
558 |
+
value: 27.839999999999996
|
559 |
+
- type: recall_at_5
|
560 |
+
value: 32.952999999999996
|
561 |
+
- task:
|
562 |
+
type: Retrieval
|
563 |
+
dataset:
|
564 |
+
type: BeIR/cqadupstack
|
565 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
566 |
+
config: default
|
567 |
+
split: test
|
568 |
+
revision: None
|
569 |
+
metrics:
|
570 |
+
- type: map_at_1
|
571 |
+
value: 28.793000000000003
|
572 |
+
- type: map_at_10
|
573 |
+
value: 38.582
|
574 |
+
- type: map_at_100
|
575 |
+
value: 39.881
|
576 |
+
- type: map_at_1000
|
577 |
+
value: 39.987
|
578 |
+
- type: map_at_3
|
579 |
+
value: 35.851
|
580 |
+
- type: map_at_5
|
581 |
+
value: 37.289
|
582 |
+
- type: mrr_at_1
|
583 |
+
value: 34.455999999999996
|
584 |
+
- type: mrr_at_10
|
585 |
+
value: 43.909
|
586 |
+
- type: mrr_at_100
|
587 |
+
value: 44.74
|
588 |
+
- type: mrr_at_1000
|
589 |
+
value: 44.786
|
590 |
+
- type: mrr_at_3
|
591 |
+
value: 41.659
|
592 |
+
- type: mrr_at_5
|
593 |
+
value: 43.010999999999996
|
594 |
+
- type: ndcg_at_1
|
595 |
+
value: 34.455999999999996
|
596 |
+
- type: ndcg_at_10
|
597 |
+
value: 44.266
|
598 |
+
- type: ndcg_at_100
|
599 |
+
value: 49.639
|
600 |
+
- type: ndcg_at_1000
|
601 |
+
value: 51.644
|
602 |
+
- type: ndcg_at_3
|
603 |
+
value: 39.865
|
604 |
+
- type: ndcg_at_5
|
605 |
+
value: 41.887
|
606 |
+
- type: precision_at_1
|
607 |
+
value: 34.455999999999996
|
608 |
+
- type: precision_at_10
|
609 |
+
value: 7.843999999999999
|
610 |
+
- type: precision_at_100
|
611 |
+
value: 1.243
|
612 |
+
- type: precision_at_1000
|
613 |
+
value: 0.158
|
614 |
+
- type: precision_at_3
|
615 |
+
value: 18.831999999999997
|
616 |
+
- type: precision_at_5
|
617 |
+
value: 13.147
|
618 |
+
- type: recall_at_1
|
619 |
+
value: 28.793000000000003
|
620 |
+
- type: recall_at_10
|
621 |
+
value: 55.68300000000001
|
622 |
+
- type: recall_at_100
|
623 |
+
value: 77.99000000000001
|
624 |
+
- type: recall_at_1000
|
625 |
+
value: 91.183
|
626 |
+
- type: recall_at_3
|
627 |
+
value: 43.293
|
628 |
+
- type: recall_at_5
|
629 |
+
value: 48.618
|
630 |
+
- task:
|
631 |
+
type: Retrieval
|
632 |
+
dataset:
|
633 |
+
type: BeIR/cqadupstack
|
634 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
635 |
+
config: default
|
636 |
+
split: test
|
637 |
+
revision: None
|
638 |
+
metrics:
|
639 |
+
- type: map_at_1
|
640 |
+
value: 25.907000000000004
|
641 |
+
- type: map_at_10
|
642 |
+
value: 35.519
|
643 |
+
- type: map_at_100
|
644 |
+
value: 36.806
|
645 |
+
- type: map_at_1000
|
646 |
+
value: 36.912
|
647 |
+
- type: map_at_3
|
648 |
+
value: 32.748
|
649 |
+
- type: map_at_5
|
650 |
+
value: 34.232
|
651 |
+
- type: mrr_at_1
|
652 |
+
value: 31.621
|
653 |
+
- type: mrr_at_10
|
654 |
+
value: 40.687
|
655 |
+
- type: mrr_at_100
|
656 |
+
value: 41.583
|
657 |
+
- type: mrr_at_1000
|
658 |
+
value: 41.638999999999996
|
659 |
+
- type: mrr_at_3
|
660 |
+
value: 38.527
|
661 |
+
- type: mrr_at_5
|
662 |
+
value: 39.612
|
663 |
+
- type: ndcg_at_1
|
664 |
+
value: 31.621
|
665 |
+
- type: ndcg_at_10
|
666 |
+
value: 41.003
|
667 |
+
- type: ndcg_at_100
|
668 |
+
value: 46.617999999999995
|
669 |
+
- type: ndcg_at_1000
|
670 |
+
value: 48.82
|
671 |
+
- type: ndcg_at_3
|
672 |
+
value: 36.542
|
673 |
+
- type: ndcg_at_5
|
674 |
+
value: 38.368
|
675 |
+
- type: precision_at_1
|
676 |
+
value: 31.621
|
677 |
+
- type: precision_at_10
|
678 |
+
value: 7.396999999999999
|
679 |
+
- type: precision_at_100
|
680 |
+
value: 1.191
|
681 |
+
- type: precision_at_1000
|
682 |
+
value: 0.153
|
683 |
+
- type: precision_at_3
|
684 |
+
value: 17.39
|
685 |
+
- type: precision_at_5
|
686 |
+
value: 12.1
|
687 |
+
- type: recall_at_1
|
688 |
+
value: 25.907000000000004
|
689 |
+
- type: recall_at_10
|
690 |
+
value: 52.115
|
691 |
+
- type: recall_at_100
|
692 |
+
value: 76.238
|
693 |
+
- type: recall_at_1000
|
694 |
+
value: 91.218
|
695 |
+
- type: recall_at_3
|
696 |
+
value: 39.417
|
697 |
+
- type: recall_at_5
|
698 |
+
value: 44.435
|
699 |
+
- task:
|
700 |
+
type: Retrieval
|
701 |
+
dataset:
|
702 |
+
type: BeIR/cqadupstack
|
703 |
+
name: MTEB CQADupstackRetrieval
|
704 |
+
config: default
|
705 |
+
split: test
|
706 |
+
revision: None
|
707 |
+
metrics:
|
708 |
+
- type: map_at_1
|
709 |
+
value: 25.732166666666668
|
710 |
+
- type: map_at_10
|
711 |
+
value: 34.51616666666667
|
712 |
+
- type: map_at_100
|
713 |
+
value: 35.67241666666666
|
714 |
+
- type: map_at_1000
|
715 |
+
value: 35.78675
|
716 |
+
- type: map_at_3
|
717 |
+
value: 31.953416666666662
|
718 |
+
- type: map_at_5
|
719 |
+
value: 33.333
|
720 |
+
- type: mrr_at_1
|
721 |
+
value: 30.300166666666673
|
722 |
+
- type: mrr_at_10
|
723 |
+
value: 38.6255
|
724 |
+
- type: mrr_at_100
|
725 |
+
value: 39.46183333333334
|
726 |
+
- type: mrr_at_1000
|
727 |
+
value: 39.519999999999996
|
728 |
+
- type: mrr_at_3
|
729 |
+
value: 36.41299999999999
|
730 |
+
- type: mrr_at_5
|
731 |
+
value: 37.6365
|
732 |
+
- type: ndcg_at_1
|
733 |
+
value: 30.300166666666673
|
734 |
+
- type: ndcg_at_10
|
735 |
+
value: 39.61466666666667
|
736 |
+
- type: ndcg_at_100
|
737 |
+
value: 44.60808333333334
|
738 |
+
- type: ndcg_at_1000
|
739 |
+
value: 46.91708333333334
|
740 |
+
- type: ndcg_at_3
|
741 |
+
value: 35.26558333333333
|
742 |
+
- type: ndcg_at_5
|
743 |
+
value: 37.220000000000006
|
744 |
+
- type: precision_at_1
|
745 |
+
value: 30.300166666666673
|
746 |
+
- type: precision_at_10
|
747 |
+
value: 6.837416666666667
|
748 |
+
- type: precision_at_100
|
749 |
+
value: 1.10425
|
750 |
+
- type: precision_at_1000
|
751 |
+
value: 0.14875
|
752 |
+
- type: precision_at_3
|
753 |
+
value: 16.13716666666667
|
754 |
+
- type: precision_at_5
|
755 |
+
value: 11.2815
|
756 |
+
- type: recall_at_1
|
757 |
+
value: 25.732166666666668
|
758 |
+
- type: recall_at_10
|
759 |
+
value: 50.578916666666665
|
760 |
+
- type: recall_at_100
|
761 |
+
value: 72.42183333333334
|
762 |
+
- type: recall_at_1000
|
763 |
+
value: 88.48766666666667
|
764 |
+
- type: recall_at_3
|
765 |
+
value: 38.41325
|
766 |
+
- type: recall_at_5
|
767 |
+
value: 43.515750000000004
|
768 |
+
- task:
|
769 |
+
type: Retrieval
|
770 |
+
dataset:
|
771 |
+
type: BeIR/cqadupstack
|
772 |
+
name: MTEB CQADupstackStatsRetrieval
|
773 |
+
config: default
|
774 |
+
split: test
|
775 |
+
revision: None
|
776 |
+
metrics:
|
777 |
+
- type: map_at_1
|
778 |
+
value: 23.951
|
779 |
+
- type: map_at_10
|
780 |
+
value: 30.974
|
781 |
+
- type: map_at_100
|
782 |
+
value: 31.804
|
783 |
+
- type: map_at_1000
|
784 |
+
value: 31.900000000000002
|
785 |
+
- type: map_at_3
|
786 |
+
value: 28.762
|
787 |
+
- type: map_at_5
|
788 |
+
value: 29.94
|
789 |
+
- type: mrr_at_1
|
790 |
+
value: 26.534000000000002
|
791 |
+
- type: mrr_at_10
|
792 |
+
value: 33.553
|
793 |
+
- type: mrr_at_100
|
794 |
+
value: 34.297
|
795 |
+
- type: mrr_at_1000
|
796 |
+
value: 34.36
|
797 |
+
- type: mrr_at_3
|
798 |
+
value: 31.391000000000002
|
799 |
+
- type: mrr_at_5
|
800 |
+
value: 32.525999999999996
|
801 |
+
- type: ndcg_at_1
|
802 |
+
value: 26.534000000000002
|
803 |
+
- type: ndcg_at_10
|
804 |
+
value: 35.112
|
805 |
+
- type: ndcg_at_100
|
806 |
+
value: 39.28
|
807 |
+
- type: ndcg_at_1000
|
808 |
+
value: 41.723
|
809 |
+
- type: ndcg_at_3
|
810 |
+
value: 30.902
|
811 |
+
- type: ndcg_at_5
|
812 |
+
value: 32.759
|
813 |
+
- type: precision_at_1
|
814 |
+
value: 26.534000000000002
|
815 |
+
- type: precision_at_10
|
816 |
+
value: 5.445
|
817 |
+
- type: precision_at_100
|
818 |
+
value: 0.819
|
819 |
+
- type: precision_at_1000
|
820 |
+
value: 0.11
|
821 |
+
- type: precision_at_3
|
822 |
+
value: 12.986
|
823 |
+
- type: precision_at_5
|
824 |
+
value: 9.049
|
825 |
+
- type: recall_at_1
|
826 |
+
value: 23.951
|
827 |
+
- type: recall_at_10
|
828 |
+
value: 45.24
|
829 |
+
- type: recall_at_100
|
830 |
+
value: 64.12299999999999
|
831 |
+
- type: recall_at_1000
|
832 |
+
value: 82.28999999999999
|
833 |
+
- type: recall_at_3
|
834 |
+
value: 33.806000000000004
|
835 |
+
- type: recall_at_5
|
836 |
+
value: 38.277
|
837 |
+
- task:
|
838 |
+
type: Retrieval
|
839 |
+
dataset:
|
840 |
+
type: BeIR/cqadupstack
|
841 |
+
name: MTEB CQADupstackTexRetrieval
|
842 |
+
config: default
|
843 |
+
split: test
|
844 |
+
revision: None
|
845 |
+
metrics:
|
846 |
+
- type: map_at_1
|
847 |
+
value: 16.829
|
848 |
+
- type: map_at_10
|
849 |
+
value: 23.684
|
850 |
+
- type: map_at_100
|
851 |
+
value: 24.683
|
852 |
+
- type: map_at_1000
|
853 |
+
value: 24.81
|
854 |
+
- type: map_at_3
|
855 |
+
value: 21.554000000000002
|
856 |
+
- type: map_at_5
|
857 |
+
value: 22.768
|
858 |
+
- type: mrr_at_1
|
859 |
+
value: 20.096
|
860 |
+
- type: mrr_at_10
|
861 |
+
value: 27.230999999999998
|
862 |
+
- type: mrr_at_100
|
863 |
+
value: 28.083999999999996
|
864 |
+
- type: mrr_at_1000
|
865 |
+
value: 28.166000000000004
|
866 |
+
- type: mrr_at_3
|
867 |
+
value: 25.212
|
868 |
+
- type: mrr_at_5
|
869 |
+
value: 26.32
|
870 |
+
- type: ndcg_at_1
|
871 |
+
value: 20.096
|
872 |
+
- type: ndcg_at_10
|
873 |
+
value: 27.989000000000004
|
874 |
+
- type: ndcg_at_100
|
875 |
+
value: 32.847
|
876 |
+
- type: ndcg_at_1000
|
877 |
+
value: 35.896
|
878 |
+
- type: ndcg_at_3
|
879 |
+
value: 24.116
|
880 |
+
- type: ndcg_at_5
|
881 |
+
value: 25.964
|
882 |
+
- type: precision_at_1
|
883 |
+
value: 20.096
|
884 |
+
- type: precision_at_10
|
885 |
+
value: 5
|
886 |
+
- type: precision_at_100
|
887 |
+
value: 0.8750000000000001
|
888 |
+
- type: precision_at_1000
|
889 |
+
value: 0.131
|
890 |
+
- type: precision_at_3
|
891 |
+
value: 11.207
|
892 |
+
- type: precision_at_5
|
893 |
+
value: 8.08
|
894 |
+
- type: recall_at_1
|
895 |
+
value: 16.829
|
896 |
+
- type: recall_at_10
|
897 |
+
value: 37.407000000000004
|
898 |
+
- type: recall_at_100
|
899 |
+
value: 59.101000000000006
|
900 |
+
- type: recall_at_1000
|
901 |
+
value: 81.024
|
902 |
+
- type: recall_at_3
|
903 |
+
value: 26.739
|
904 |
+
- type: recall_at_5
|
905 |
+
value: 31.524
|
906 |
+
- task:
|
907 |
+
type: Retrieval
|
908 |
+
dataset:
|
909 |
+
type: BeIR/cqadupstack
|
910 |
+
name: MTEB CQADupstackUnixRetrieval
|
911 |
+
config: default
|
912 |
+
split: test
|
913 |
+
revision: None
|
914 |
+
metrics:
|
915 |
+
- type: map_at_1
|
916 |
+
value: 24.138
|
917 |
+
- type: map_at_10
|
918 |
+
value: 32.275999999999996
|
919 |
+
- type: map_at_100
|
920 |
+
value: 33.416000000000004
|
921 |
+
- type: map_at_1000
|
922 |
+
value: 33.527
|
923 |
+
- type: map_at_3
|
924 |
+
value: 29.854000000000003
|
925 |
+
- type: map_at_5
|
926 |
+
value: 31.096
|
927 |
+
- type: mrr_at_1
|
928 |
+
value: 28.450999999999997
|
929 |
+
- type: mrr_at_10
|
930 |
+
value: 36.214
|
931 |
+
- type: mrr_at_100
|
932 |
+
value: 37.134
|
933 |
+
- type: mrr_at_1000
|
934 |
+
value: 37.198
|
935 |
+
- type: mrr_at_3
|
936 |
+
value: 34.001999999999995
|
937 |
+
- type: mrr_at_5
|
938 |
+
value: 35.187000000000005
|
939 |
+
- type: ndcg_at_1
|
940 |
+
value: 28.450999999999997
|
941 |
+
- type: ndcg_at_10
|
942 |
+
value: 37.166
|
943 |
+
- type: ndcg_at_100
|
944 |
+
value: 42.454
|
945 |
+
- type: ndcg_at_1000
|
946 |
+
value: 44.976
|
947 |
+
- type: ndcg_at_3
|
948 |
+
value: 32.796
|
949 |
+
- type: ndcg_at_5
|
950 |
+
value: 34.631
|
951 |
+
- type: precision_at_1
|
952 |
+
value: 28.450999999999997
|
953 |
+
- type: precision_at_10
|
954 |
+
value: 6.241
|
955 |
+
- type: precision_at_100
|
956 |
+
value: 0.9950000000000001
|
957 |
+
- type: precision_at_1000
|
958 |
+
value: 0.133
|
959 |
+
- type: precision_at_3
|
960 |
+
value: 14.801
|
961 |
+
- type: precision_at_5
|
962 |
+
value: 10.280000000000001
|
963 |
+
- type: recall_at_1
|
964 |
+
value: 24.138
|
965 |
+
- type: recall_at_10
|
966 |
+
value: 48.111
|
967 |
+
- type: recall_at_100
|
968 |
+
value: 71.245
|
969 |
+
- type: recall_at_1000
|
970 |
+
value: 88.986
|
971 |
+
- type: recall_at_3
|
972 |
+
value: 36.119
|
973 |
+
- type: recall_at_5
|
974 |
+
value: 40.846
|
975 |
+
- task:
|
976 |
+
type: Retrieval
|
977 |
+
dataset:
|
978 |
+
type: BeIR/cqadupstack
|
979 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
980 |
+
config: default
|
981 |
+
split: test
|
982 |
+
revision: None
|
983 |
+
metrics:
|
984 |
+
- type: map_at_1
|
985 |
+
value: 23.244
|
986 |
+
- type: map_at_10
|
987 |
+
value: 31.227
|
988 |
+
- type: map_at_100
|
989 |
+
value: 33.007
|
990 |
+
- type: map_at_1000
|
991 |
+
value: 33.223
|
992 |
+
- type: map_at_3
|
993 |
+
value: 28.924
|
994 |
+
- type: map_at_5
|
995 |
+
value: 30.017
|
996 |
+
- type: mrr_at_1
|
997 |
+
value: 27.668
|
998 |
+
- type: mrr_at_10
|
999 |
+
value: 35.524
|
1000 |
+
- type: mrr_at_100
|
1001 |
+
value: 36.699
|
1002 |
+
- type: mrr_at_1000
|
1003 |
+
value: 36.759
|
1004 |
+
- type: mrr_at_3
|
1005 |
+
value: 33.366
|
1006 |
+
- type: mrr_at_5
|
1007 |
+
value: 34.552
|
1008 |
+
- type: ndcg_at_1
|
1009 |
+
value: 27.668
|
1010 |
+
- type: ndcg_at_10
|
1011 |
+
value: 36.381
|
1012 |
+
- type: ndcg_at_100
|
1013 |
+
value: 43.062
|
1014 |
+
- type: ndcg_at_1000
|
1015 |
+
value: 45.656
|
1016 |
+
- type: ndcg_at_3
|
1017 |
+
value: 32.501999999999995
|
1018 |
+
- type: ndcg_at_5
|
1019 |
+
value: 34.105999999999995
|
1020 |
+
- type: precision_at_1
|
1021 |
+
value: 27.668
|
1022 |
+
- type: precision_at_10
|
1023 |
+
value: 6.798
|
1024 |
+
- type: precision_at_100
|
1025 |
+
value: 1.492
|
1026 |
+
- type: precision_at_1000
|
1027 |
+
value: 0.234
|
1028 |
+
- type: precision_at_3
|
1029 |
+
value: 15.152
|
1030 |
+
- type: precision_at_5
|
1031 |
+
value: 10.791
|
1032 |
+
- type: recall_at_1
|
1033 |
+
value: 23.244
|
1034 |
+
- type: recall_at_10
|
1035 |
+
value: 45.979
|
1036 |
+
- type: recall_at_100
|
1037 |
+
value: 74.822
|
1038 |
+
- type: recall_at_1000
|
1039 |
+
value: 91.078
|
1040 |
+
- type: recall_at_3
|
1041 |
+
value: 34.925
|
1042 |
+
- type: recall_at_5
|
1043 |
+
value: 39.126
|
1044 |
+
- task:
|
1045 |
+
type: Retrieval
|
1046 |
+
dataset:
|
1047 |
+
type: BeIR/cqadupstack
|
1048 |
+
name: MTEB CQADupstackWordpressRetrieval
|
1049 |
+
config: default
|
1050 |
+
split: test
|
1051 |
+
revision: None
|
1052 |
+
metrics:
|
1053 |
+
- type: map_at_1
|
1054 |
+
value: 19.945
|
1055 |
+
- type: map_at_10
|
1056 |
+
value: 27.517999999999997
|
1057 |
+
- type: map_at_100
|
1058 |
+
value: 28.588
|
1059 |
+
- type: map_at_1000
|
1060 |
+
value: 28.682000000000002
|
1061 |
+
- type: map_at_3
|
1062 |
+
value: 25.345000000000002
|
1063 |
+
- type: map_at_5
|
1064 |
+
value: 26.555
|
1065 |
+
- type: mrr_at_1
|
1066 |
+
value: 21.996
|
1067 |
+
- type: mrr_at_10
|
1068 |
+
value: 29.845
|
1069 |
+
- type: mrr_at_100
|
1070 |
+
value: 30.775999999999996
|
1071 |
+
- type: mrr_at_1000
|
1072 |
+
value: 30.845
|
1073 |
+
- type: mrr_at_3
|
1074 |
+
value: 27.726
|
1075 |
+
- type: mrr_at_5
|
1076 |
+
value: 28.882
|
1077 |
+
- type: ndcg_at_1
|
1078 |
+
value: 21.996
|
1079 |
+
- type: ndcg_at_10
|
1080 |
+
value: 32.034
|
1081 |
+
- type: ndcg_at_100
|
1082 |
+
value: 37.185
|
1083 |
+
- type: ndcg_at_1000
|
1084 |
+
value: 39.645
|
1085 |
+
- type: ndcg_at_3
|
1086 |
+
value: 27.750999999999998
|
1087 |
+
- type: ndcg_at_5
|
1088 |
+
value: 29.805999999999997
|
1089 |
+
- type: precision_at_1
|
1090 |
+
value: 21.996
|
1091 |
+
- type: precision_at_10
|
1092 |
+
value: 5.065
|
1093 |
+
- type: precision_at_100
|
1094 |
+
value: 0.819
|
1095 |
+
- type: precision_at_1000
|
1096 |
+
value: 0.11399999999999999
|
1097 |
+
- type: precision_at_3
|
1098 |
+
value: 12.076
|
1099 |
+
- type: precision_at_5
|
1100 |
+
value: 8.392
|
1101 |
+
- type: recall_at_1
|
1102 |
+
value: 19.945
|
1103 |
+
- type: recall_at_10
|
1104 |
+
value: 43.62
|
1105 |
+
- type: recall_at_100
|
1106 |
+
value: 67.194
|
1107 |
+
- type: recall_at_1000
|
1108 |
+
value: 85.7
|
1109 |
+
- type: recall_at_3
|
1110 |
+
value: 32.15
|
1111 |
+
- type: recall_at_5
|
1112 |
+
value: 37.208999999999996
|
1113 |
+
- task:
|
1114 |
+
type: Retrieval
|
1115 |
+
dataset:
|
1116 |
+
type: climate-fever
|
1117 |
+
name: MTEB ClimateFEVER
|
1118 |
+
config: default
|
1119 |
+
split: test
|
1120 |
+
revision: None
|
1121 |
+
metrics:
|
1122 |
+
- type: map_at_1
|
1123 |
+
value: 18.279
|
1124 |
+
- type: map_at_10
|
1125 |
+
value: 31.052999999999997
|
1126 |
+
- type: map_at_100
|
1127 |
+
value: 33.125
|
1128 |
+
- type: map_at_1000
|
1129 |
+
value: 33.306000000000004
|
1130 |
+
- type: map_at_3
|
1131 |
+
value: 26.208
|
1132 |
+
- type: map_at_5
|
1133 |
+
value: 28.857
|
1134 |
+
- type: mrr_at_1
|
1135 |
+
value: 42.671
|
1136 |
+
- type: mrr_at_10
|
1137 |
+
value: 54.557
|
1138 |
+
- type: mrr_at_100
|
1139 |
+
value: 55.142
|
1140 |
+
- type: mrr_at_1000
|
1141 |
+
value: 55.169000000000004
|
1142 |
+
- type: mrr_at_3
|
1143 |
+
value: 51.488
|
1144 |
+
- type: mrr_at_5
|
1145 |
+
value: 53.439
|
1146 |
+
- type: ndcg_at_1
|
1147 |
+
value: 42.671
|
1148 |
+
- type: ndcg_at_10
|
1149 |
+
value: 41.276
|
1150 |
+
- type: ndcg_at_100
|
1151 |
+
value: 48.376000000000005
|
1152 |
+
- type: ndcg_at_1000
|
1153 |
+
value: 51.318
|
1154 |
+
- type: ndcg_at_3
|
1155 |
+
value: 35.068
|
1156 |
+
- type: ndcg_at_5
|
1157 |
+
value: 37.242
|
1158 |
+
- type: precision_at_1
|
1159 |
+
value: 42.671
|
1160 |
+
- type: precision_at_10
|
1161 |
+
value: 12.638
|
1162 |
+
- type: precision_at_100
|
1163 |
+
value: 2.045
|
1164 |
+
- type: precision_at_1000
|
1165 |
+
value: 0.26
|
1166 |
+
- type: precision_at_3
|
1167 |
+
value: 26.08
|
1168 |
+
- type: precision_at_5
|
1169 |
+
value: 19.805
|
1170 |
+
- type: recall_at_1
|
1171 |
+
value: 18.279
|
1172 |
+
- type: recall_at_10
|
1173 |
+
value: 46.946
|
1174 |
+
- type: recall_at_100
|
1175 |
+
value: 70.97200000000001
|
1176 |
+
- type: recall_at_1000
|
1177 |
+
value: 87.107
|
1178 |
+
- type: recall_at_3
|
1179 |
+
value: 31.147999999999996
|
1180 |
+
- type: recall_at_5
|
1181 |
+
value: 38.099
|
1182 |
+
- task:
|
1183 |
+
type: Retrieval
|
1184 |
+
dataset:
|
1185 |
+
type: dbpedia-entity
|
1186 |
+
name: MTEB DBPedia
|
1187 |
+
config: default
|
1188 |
+
split: test
|
1189 |
+
revision: None
|
1190 |
+
metrics:
|
1191 |
+
- type: map_at_1
|
1192 |
+
value: 8.573
|
1193 |
+
- type: map_at_10
|
1194 |
+
value: 19.747
|
1195 |
+
- type: map_at_100
|
1196 |
+
value: 28.205000000000002
|
1197 |
+
- type: map_at_1000
|
1198 |
+
value: 29.831000000000003
|
1199 |
+
- type: map_at_3
|
1200 |
+
value: 14.109
|
1201 |
+
- type: map_at_5
|
1202 |
+
value: 16.448999999999998
|
1203 |
+
- type: mrr_at_1
|
1204 |
+
value: 71
|
1205 |
+
- type: mrr_at_10
|
1206 |
+
value: 77.68599999999999
|
1207 |
+
- type: mrr_at_100
|
1208 |
+
value: 77.995
|
1209 |
+
- type: mrr_at_1000
|
1210 |
+
value: 78.00200000000001
|
1211 |
+
- type: mrr_at_3
|
1212 |
+
value: 76.292
|
1213 |
+
- type: mrr_at_5
|
1214 |
+
value: 77.029
|
1215 |
+
- type: ndcg_at_1
|
1216 |
+
value: 59.12500000000001
|
1217 |
+
- type: ndcg_at_10
|
1218 |
+
value: 43.9
|
1219 |
+
- type: ndcg_at_100
|
1220 |
+
value: 47.863
|
1221 |
+
- type: ndcg_at_1000
|
1222 |
+
value: 54.848
|
1223 |
+
- type: ndcg_at_3
|
1224 |
+
value: 49.803999999999995
|
1225 |
+
- type: ndcg_at_5
|
1226 |
+
value: 46.317
|
1227 |
+
- type: precision_at_1
|
1228 |
+
value: 71
|
1229 |
+
- type: precision_at_10
|
1230 |
+
value: 34.4
|
1231 |
+
- type: precision_at_100
|
1232 |
+
value: 11.063
|
1233 |
+
- type: precision_at_1000
|
1234 |
+
value: 1.989
|
1235 |
+
- type: precision_at_3
|
1236 |
+
value: 52.333
|
1237 |
+
- type: precision_at_5
|
1238 |
+
value: 43.7
|
1239 |
+
- type: recall_at_1
|
1240 |
+
value: 8.573
|
1241 |
+
- type: recall_at_10
|
1242 |
+
value: 25.615
|
1243 |
+
- type: recall_at_100
|
1244 |
+
value: 53.385000000000005
|
1245 |
+
- type: recall_at_1000
|
1246 |
+
value: 75.46000000000001
|
1247 |
+
- type: recall_at_3
|
1248 |
+
value: 15.429
|
1249 |
+
- type: recall_at_5
|
1250 |
+
value: 19.357
|
1251 |
+
- task:
|
1252 |
+
type: Classification
|
1253 |
+
dataset:
|
1254 |
+
type: mteb/emotion
|
1255 |
+
name: MTEB EmotionClassification
|
1256 |
+
config: default
|
1257 |
+
split: test
|
1258 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1259 |
+
metrics:
|
1260 |
+
- type: accuracy
|
1261 |
+
value: 47.989999999999995
|
1262 |
+
- type: f1
|
1263 |
+
value: 42.776314451497555
|
1264 |
+
- task:
|
1265 |
+
type: Retrieval
|
1266 |
+
dataset:
|
1267 |
+
type: fever
|
1268 |
+
name: MTEB FEVER
|
1269 |
+
config: default
|
1270 |
+
split: test
|
1271 |
+
revision: None
|
1272 |
+
metrics:
|
1273 |
+
- type: map_at_1
|
1274 |
+
value: 74.13499999999999
|
1275 |
+
- type: map_at_10
|
1276 |
+
value: 82.825
|
1277 |
+
- type: map_at_100
|
1278 |
+
value: 83.096
|
1279 |
+
- type: map_at_1000
|
1280 |
+
value: 83.111
|
1281 |
+
- type: map_at_3
|
1282 |
+
value: 81.748
|
1283 |
+
- type: map_at_5
|
1284 |
+
value: 82.446
|
1285 |
+
- type: mrr_at_1
|
1286 |
+
value: 79.553
|
1287 |
+
- type: mrr_at_10
|
1288 |
+
value: 86.654
|
1289 |
+
- type: mrr_at_100
|
1290 |
+
value: 86.774
|
1291 |
+
- type: mrr_at_1000
|
1292 |
+
value: 86.778
|
1293 |
+
- type: mrr_at_3
|
1294 |
+
value: 85.981
|
1295 |
+
- type: mrr_at_5
|
1296 |
+
value: 86.462
|
1297 |
+
- type: ndcg_at_1
|
1298 |
+
value: 79.553
|
1299 |
+
- type: ndcg_at_10
|
1300 |
+
value: 86.345
|
1301 |
+
- type: ndcg_at_100
|
1302 |
+
value: 87.32
|
1303 |
+
- type: ndcg_at_1000
|
1304 |
+
value: 87.58200000000001
|
1305 |
+
- type: ndcg_at_3
|
1306 |
+
value: 84.719
|
1307 |
+
- type: ndcg_at_5
|
1308 |
+
value: 85.677
|
1309 |
+
- type: precision_at_1
|
1310 |
+
value: 79.553
|
1311 |
+
- type: precision_at_10
|
1312 |
+
value: 10.402000000000001
|
1313 |
+
- type: precision_at_100
|
1314 |
+
value: 1.1119999999999999
|
1315 |
+
- type: precision_at_1000
|
1316 |
+
value: 0.11499999999999999
|
1317 |
+
- type: precision_at_3
|
1318 |
+
value: 32.413
|
1319 |
+
- type: precision_at_5
|
1320 |
+
value: 20.138
|
1321 |
+
- type: recall_at_1
|
1322 |
+
value: 74.13499999999999
|
1323 |
+
- type: recall_at_10
|
1324 |
+
value: 93.215
|
1325 |
+
- type: recall_at_100
|
1326 |
+
value: 97.083
|
1327 |
+
- type: recall_at_1000
|
1328 |
+
value: 98.732
|
1329 |
+
- type: recall_at_3
|
1330 |
+
value: 88.79
|
1331 |
+
- type: recall_at_5
|
1332 |
+
value: 91.259
|
1333 |
+
- task:
|
1334 |
+
type: Retrieval
|
1335 |
+
dataset:
|
1336 |
+
type: fiqa
|
1337 |
+
name: MTEB FiQA2018
|
1338 |
+
config: default
|
1339 |
+
split: test
|
1340 |
+
revision: None
|
1341 |
+
metrics:
|
1342 |
+
- type: map_at_1
|
1343 |
+
value: 18.298000000000002
|
1344 |
+
- type: map_at_10
|
1345 |
+
value: 29.901
|
1346 |
+
- type: map_at_100
|
1347 |
+
value: 31.528
|
1348 |
+
- type: map_at_1000
|
1349 |
+
value: 31.713
|
1350 |
+
- type: map_at_3
|
1351 |
+
value: 25.740000000000002
|
1352 |
+
- type: map_at_5
|
1353 |
+
value: 28.227999999999998
|
1354 |
+
- type: mrr_at_1
|
1355 |
+
value: 36.728
|
1356 |
+
- type: mrr_at_10
|
1357 |
+
value: 45.401
|
1358 |
+
- type: mrr_at_100
|
1359 |
+
value: 46.27
|
1360 |
+
- type: mrr_at_1000
|
1361 |
+
value: 46.315
|
1362 |
+
- type: mrr_at_3
|
1363 |
+
value: 42.978
|
1364 |
+
- type: mrr_at_5
|
1365 |
+
value: 44.29
|
1366 |
+
- type: ndcg_at_1
|
1367 |
+
value: 36.728
|
1368 |
+
- type: ndcg_at_10
|
1369 |
+
value: 37.456
|
1370 |
+
- type: ndcg_at_100
|
1371 |
+
value: 43.832
|
1372 |
+
- type: ndcg_at_1000
|
1373 |
+
value: 47
|
1374 |
+
- type: ndcg_at_3
|
1375 |
+
value: 33.694
|
1376 |
+
- type: ndcg_at_5
|
1377 |
+
value: 35.085
|
1378 |
+
- type: precision_at_1
|
1379 |
+
value: 36.728
|
1380 |
+
- type: precision_at_10
|
1381 |
+
value: 10.386
|
1382 |
+
- type: precision_at_100
|
1383 |
+
value: 1.701
|
1384 |
+
- type: precision_at_1000
|
1385 |
+
value: 0.22599999999999998
|
1386 |
+
- type: precision_at_3
|
1387 |
+
value: 22.479
|
1388 |
+
- type: precision_at_5
|
1389 |
+
value: 16.605
|
1390 |
+
- type: recall_at_1
|
1391 |
+
value: 18.298000000000002
|
1392 |
+
- type: recall_at_10
|
1393 |
+
value: 44.369
|
1394 |
+
- type: recall_at_100
|
1395 |
+
value: 68.098
|
1396 |
+
- type: recall_at_1000
|
1397 |
+
value: 87.21900000000001
|
1398 |
+
- type: recall_at_3
|
1399 |
+
value: 30.215999999999998
|
1400 |
+
- type: recall_at_5
|
1401 |
+
value: 36.861
|
1402 |
+
- task:
|
1403 |
+
type: Retrieval
|
1404 |
+
dataset:
|
1405 |
+
type: hotpotqa
|
1406 |
+
name: MTEB HotpotQA
|
1407 |
+
config: default
|
1408 |
+
split: test
|
1409 |
+
revision: None
|
1410 |
+
metrics:
|
1411 |
+
- type: map_at_1
|
1412 |
+
value: 39.568
|
1413 |
+
- type: map_at_10
|
1414 |
+
value: 65.061
|
1415 |
+
- type: map_at_100
|
1416 |
+
value: 65.896
|
1417 |
+
- type: map_at_1000
|
1418 |
+
value: 65.95100000000001
|
1419 |
+
- type: map_at_3
|
1420 |
+
value: 61.831
|
1421 |
+
- type: map_at_5
|
1422 |
+
value: 63.849000000000004
|
1423 |
+
- type: mrr_at_1
|
1424 |
+
value: 79.136
|
1425 |
+
- type: mrr_at_10
|
1426 |
+
value: 84.58200000000001
|
1427 |
+
- type: mrr_at_100
|
1428 |
+
value: 84.765
|
1429 |
+
- type: mrr_at_1000
|
1430 |
+
value: 84.772
|
1431 |
+
- type: mrr_at_3
|
1432 |
+
value: 83.684
|
1433 |
+
- type: mrr_at_5
|
1434 |
+
value: 84.223
|
1435 |
+
- type: ndcg_at_1
|
1436 |
+
value: 79.136
|
1437 |
+
- type: ndcg_at_10
|
1438 |
+
value: 72.622
|
1439 |
+
- type: ndcg_at_100
|
1440 |
+
value: 75.539
|
1441 |
+
- type: ndcg_at_1000
|
1442 |
+
value: 76.613
|
1443 |
+
- type: ndcg_at_3
|
1444 |
+
value: 68.065
|
1445 |
+
- type: ndcg_at_5
|
1446 |
+
value: 70.58
|
1447 |
+
- type: precision_at_1
|
1448 |
+
value: 79.136
|
1449 |
+
- type: precision_at_10
|
1450 |
+
value: 15.215
|
1451 |
+
- type: precision_at_100
|
1452 |
+
value: 1.7500000000000002
|
1453 |
+
- type: precision_at_1000
|
1454 |
+
value: 0.189
|
1455 |
+
- type: precision_at_3
|
1456 |
+
value: 44.011
|
1457 |
+
- type: precision_at_5
|
1458 |
+
value: 28.388999999999996
|
1459 |
+
- type: recall_at_1
|
1460 |
+
value: 39.568
|
1461 |
+
- type: recall_at_10
|
1462 |
+
value: 76.077
|
1463 |
+
- type: recall_at_100
|
1464 |
+
value: 87.481
|
1465 |
+
- type: recall_at_1000
|
1466 |
+
value: 94.56400000000001
|
1467 |
+
- type: recall_at_3
|
1468 |
+
value: 66.01599999999999
|
1469 |
+
- type: recall_at_5
|
1470 |
+
value: 70.97200000000001
|
1471 |
+
- task:
|
1472 |
+
type: Classification
|
1473 |
+
dataset:
|
1474 |
+
type: mteb/imdb
|
1475 |
+
name: MTEB ImdbClassification
|
1476 |
+
config: default
|
1477 |
+
split: test
|
1478 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1479 |
+
metrics:
|
1480 |
+
- type: accuracy
|
1481 |
+
value: 85.312
|
1482 |
+
- type: ap
|
1483 |
+
value: 80.36296867333715
|
1484 |
+
- type: f1
|
1485 |
+
value: 85.26613311552218
|
1486 |
+
- task:
|
1487 |
+
type: Retrieval
|
1488 |
+
dataset:
|
1489 |
+
type: msmarco
|
1490 |
+
name: MTEB MSMARCO
|
1491 |
+
config: default
|
1492 |
+
split: dev
|
1493 |
+
revision: None
|
1494 |
+
metrics:
|
1495 |
+
- type: map_at_1
|
1496 |
+
value: 23.363999999999997
|
1497 |
+
- type: map_at_10
|
1498 |
+
value: 35.711999999999996
|
1499 |
+
- type: map_at_100
|
1500 |
+
value: 36.876999999999995
|
1501 |
+
- type: map_at_1000
|
1502 |
+
value: 36.923
|
1503 |
+
- type: map_at_3
|
1504 |
+
value: 32.034
|
1505 |
+
- type: map_at_5
|
1506 |
+
value: 34.159
|
1507 |
+
- type: mrr_at_1
|
1508 |
+
value: 24.04
|
1509 |
+
- type: mrr_at_10
|
1510 |
+
value: 36.345
|
1511 |
+
- type: mrr_at_100
|
1512 |
+
value: 37.441
|
1513 |
+
- type: mrr_at_1000
|
1514 |
+
value: 37.480000000000004
|
1515 |
+
- type: mrr_at_3
|
1516 |
+
value: 32.713
|
1517 |
+
- type: mrr_at_5
|
1518 |
+
value: 34.824
|
1519 |
+
- type: ndcg_at_1
|
1520 |
+
value: 24.026
|
1521 |
+
- type: ndcg_at_10
|
1522 |
+
value: 42.531
|
1523 |
+
- type: ndcg_at_100
|
1524 |
+
value: 48.081
|
1525 |
+
- type: ndcg_at_1000
|
1526 |
+
value: 49.213
|
1527 |
+
- type: ndcg_at_3
|
1528 |
+
value: 35.044
|
1529 |
+
- type: ndcg_at_5
|
1530 |
+
value: 38.834
|
1531 |
+
- type: precision_at_1
|
1532 |
+
value: 24.026
|
1533 |
+
- type: precision_at_10
|
1534 |
+
value: 6.622999999999999
|
1535 |
+
- type: precision_at_100
|
1536 |
+
value: 0.941
|
1537 |
+
- type: precision_at_1000
|
1538 |
+
value: 0.104
|
1539 |
+
- type: precision_at_3
|
1540 |
+
value: 14.909
|
1541 |
+
- type: precision_at_5
|
1542 |
+
value: 10.871
|
1543 |
+
- type: recall_at_1
|
1544 |
+
value: 23.363999999999997
|
1545 |
+
- type: recall_at_10
|
1546 |
+
value: 63.426
|
1547 |
+
- type: recall_at_100
|
1548 |
+
value: 88.96300000000001
|
1549 |
+
- type: recall_at_1000
|
1550 |
+
value: 97.637
|
1551 |
+
- type: recall_at_3
|
1552 |
+
value: 43.095
|
1553 |
+
- type: recall_at_5
|
1554 |
+
value: 52.178000000000004
|
1555 |
+
- task:
|
1556 |
+
type: Classification
|
1557 |
+
dataset:
|
1558 |
+
type: mteb/mtop_domain
|
1559 |
+
name: MTEB MTOPDomainClassification (en)
|
1560 |
+
config: en
|
1561 |
+
split: test
|
1562 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1563 |
+
metrics:
|
1564 |
+
- type: accuracy
|
1565 |
+
value: 93.0095759233926
|
1566 |
+
- type: f1
|
1567 |
+
value: 92.78387794667408
|
1568 |
+
- task:
|
1569 |
+
type: Classification
|
1570 |
+
dataset:
|
1571 |
+
type: mteb/mtop_intent
|
1572 |
+
name: MTEB MTOPIntentClassification (en)
|
1573 |
+
config: en
|
1574 |
+
split: test
|
1575 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1576 |
+
metrics:
|
1577 |
+
- type: accuracy
|
1578 |
+
value: 75.0296397628819
|
1579 |
+
- type: f1
|
1580 |
+
value: 58.45699589820874
|
1581 |
+
- task:
|
1582 |
+
type: Classification
|
1583 |
+
dataset:
|
1584 |
+
type: mteb/amazon_massive_intent
|
1585 |
+
name: MTEB MassiveIntentClassification (en)
|
1586 |
+
config: en
|
1587 |
+
split: test
|
1588 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1589 |
+
metrics:
|
1590 |
+
- type: accuracy
|
1591 |
+
value: 73.45662407531944
|
1592 |
+
- type: f1
|
1593 |
+
value: 71.42364781421813
|
1594 |
+
- task:
|
1595 |
+
type: Classification
|
1596 |
+
dataset:
|
1597 |
+
type: mteb/amazon_massive_scenario
|
1598 |
+
name: MTEB MassiveScenarioClassification (en)
|
1599 |
+
config: en
|
1600 |
+
split: test
|
1601 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1602 |
+
metrics:
|
1603 |
+
- type: accuracy
|
1604 |
+
value: 77.07800941492937
|
1605 |
+
- type: f1
|
1606 |
+
value: 77.22799045640845
|
1607 |
+
- task:
|
1608 |
+
type: Clustering
|
1609 |
+
dataset:
|
1610 |
+
type: mteb/medrxiv-clustering-p2p
|
1611 |
+
name: MTEB MedrxivClusteringP2P
|
1612 |
+
config: default
|
1613 |
+
split: test
|
1614 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1615 |
+
metrics:
|
1616 |
+
- type: v_measure
|
1617 |
+
value: 34.531234379250606
|
1618 |
+
- task:
|
1619 |
+
type: Clustering
|
1620 |
+
dataset:
|
1621 |
+
type: mteb/medrxiv-clustering-s2s
|
1622 |
+
name: MTEB MedrxivClusteringS2S
|
1623 |
+
config: default
|
1624 |
+
split: test
|
1625 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1626 |
+
metrics:
|
1627 |
+
- type: v_measure
|
1628 |
+
value: 30.941490381193802
|
1629 |
+
- task:
|
1630 |
+
type: Reranking
|
1631 |
+
dataset:
|
1632 |
+
type: mteb/mind_small
|
1633 |
+
name: MTEB MindSmallReranking
|
1634 |
+
config: default
|
1635 |
+
split: test
|
1636 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1637 |
+
metrics:
|
1638 |
+
- type: map
|
1639 |
+
value: 30.3115090856725
|
1640 |
+
- type: mrr
|
1641 |
+
value: 31.290667638675757
|
1642 |
+
- task:
|
1643 |
+
type: Retrieval
|
1644 |
+
dataset:
|
1645 |
+
type: nfcorpus
|
1646 |
+
name: MTEB NFCorpus
|
1647 |
+
config: default
|
1648 |
+
split: test
|
1649 |
+
revision: None
|
1650 |
+
metrics:
|
1651 |
+
- type: map_at_1
|
1652 |
+
value: 5.465
|
1653 |
+
- type: map_at_10
|
1654 |
+
value: 13.03
|
1655 |
+
- type: map_at_100
|
1656 |
+
value: 16.057
|
1657 |
+
- type: map_at_1000
|
1658 |
+
value: 17.49
|
1659 |
+
- type: map_at_3
|
1660 |
+
value: 9.553
|
1661 |
+
- type: map_at_5
|
1662 |
+
value: 11.204
|
1663 |
+
- type: mrr_at_1
|
1664 |
+
value: 43.653
|
1665 |
+
- type: mrr_at_10
|
1666 |
+
value: 53.269
|
1667 |
+
- type: mrr_at_100
|
1668 |
+
value: 53.72
|
1669 |
+
- type: mrr_at_1000
|
1670 |
+
value: 53.761
|
1671 |
+
- type: mrr_at_3
|
1672 |
+
value: 50.929
|
1673 |
+
- type: mrr_at_5
|
1674 |
+
value: 52.461
|
1675 |
+
- type: ndcg_at_1
|
1676 |
+
value: 42.26
|
1677 |
+
- type: ndcg_at_10
|
1678 |
+
value: 34.673
|
1679 |
+
- type: ndcg_at_100
|
1680 |
+
value: 30.759999999999998
|
1681 |
+
- type: ndcg_at_1000
|
1682 |
+
value: 39.728
|
1683 |
+
- type: ndcg_at_3
|
1684 |
+
value: 40.349000000000004
|
1685 |
+
- type: ndcg_at_5
|
1686 |
+
value: 37.915
|
1687 |
+
- type: precision_at_1
|
1688 |
+
value: 43.653
|
1689 |
+
- type: precision_at_10
|
1690 |
+
value: 25.789
|
1691 |
+
- type: precision_at_100
|
1692 |
+
value: 7.754999999999999
|
1693 |
+
- type: precision_at_1000
|
1694 |
+
value: 2.07
|
1695 |
+
- type: precision_at_3
|
1696 |
+
value: 38.596000000000004
|
1697 |
+
- type: precision_at_5
|
1698 |
+
value: 33.251
|
1699 |
+
- type: recall_at_1
|
1700 |
+
value: 5.465
|
1701 |
+
- type: recall_at_10
|
1702 |
+
value: 17.148
|
1703 |
+
- type: recall_at_100
|
1704 |
+
value: 29.768
|
1705 |
+
- type: recall_at_1000
|
1706 |
+
value: 62.239
|
1707 |
+
- type: recall_at_3
|
1708 |
+
value: 10.577
|
1709 |
+
- type: recall_at_5
|
1710 |
+
value: 13.315
|
1711 |
+
- task:
|
1712 |
+
type: Retrieval
|
1713 |
+
dataset:
|
1714 |
+
type: nq
|
1715 |
+
name: MTEB NQ
|
1716 |
+
config: default
|
1717 |
+
split: test
|
1718 |
+
revision: None
|
1719 |
+
metrics:
|
1720 |
+
- type: map_at_1
|
1721 |
+
value: 37.008
|
1722 |
+
- type: map_at_10
|
1723 |
+
value: 52.467
|
1724 |
+
- type: map_at_100
|
1725 |
+
value: 53.342999999999996
|
1726 |
+
- type: map_at_1000
|
1727 |
+
value: 53.366
|
1728 |
+
- type: map_at_3
|
1729 |
+
value: 48.412
|
1730 |
+
- type: map_at_5
|
1731 |
+
value: 50.875
|
1732 |
+
- type: mrr_at_1
|
1733 |
+
value: 41.541
|
1734 |
+
- type: mrr_at_10
|
1735 |
+
value: 54.967
|
1736 |
+
- type: mrr_at_100
|
1737 |
+
value: 55.611
|
1738 |
+
- type: mrr_at_1000
|
1739 |
+
value: 55.627
|
1740 |
+
- type: mrr_at_3
|
1741 |
+
value: 51.824999999999996
|
1742 |
+
- type: mrr_at_5
|
1743 |
+
value: 53.763000000000005
|
1744 |
+
- type: ndcg_at_1
|
1745 |
+
value: 41.541
|
1746 |
+
- type: ndcg_at_10
|
1747 |
+
value: 59.724999999999994
|
1748 |
+
- type: ndcg_at_100
|
1749 |
+
value: 63.38700000000001
|
1750 |
+
- type: ndcg_at_1000
|
1751 |
+
value: 63.883
|
1752 |
+
- type: ndcg_at_3
|
1753 |
+
value: 52.331
|
1754 |
+
- type: ndcg_at_5
|
1755 |
+
value: 56.327000000000005
|
1756 |
+
- type: precision_at_1
|
1757 |
+
value: 41.541
|
1758 |
+
- type: precision_at_10
|
1759 |
+
value: 9.447
|
1760 |
+
- type: precision_at_100
|
1761 |
+
value: 1.1520000000000001
|
1762 |
+
- type: precision_at_1000
|
1763 |
+
value: 0.12
|
1764 |
+
- type: precision_at_3
|
1765 |
+
value: 23.262
|
1766 |
+
- type: precision_at_5
|
1767 |
+
value: 16.314999999999998
|
1768 |
+
- type: recall_at_1
|
1769 |
+
value: 37.008
|
1770 |
+
- type: recall_at_10
|
1771 |
+
value: 79.145
|
1772 |
+
- type: recall_at_100
|
1773 |
+
value: 94.986
|
1774 |
+
- type: recall_at_1000
|
1775 |
+
value: 98.607
|
1776 |
+
- type: recall_at_3
|
1777 |
+
value: 60.277
|
1778 |
+
- type: recall_at_5
|
1779 |
+
value: 69.407
|
1780 |
+
- task:
|
1781 |
+
type: Retrieval
|
1782 |
+
dataset:
|
1783 |
+
type: quora
|
1784 |
+
name: MTEB QuoraRetrieval
|
1785 |
+
config: default
|
1786 |
+
split: test
|
1787 |
+
revision: None
|
1788 |
+
metrics:
|
1789 |
+
- type: map_at_1
|
1790 |
+
value: 70.402
|
1791 |
+
- type: map_at_10
|
1792 |
+
value: 84.181
|
1793 |
+
- type: map_at_100
|
1794 |
+
value: 84.796
|
1795 |
+
- type: map_at_1000
|
1796 |
+
value: 84.81400000000001
|
1797 |
+
- type: map_at_3
|
1798 |
+
value: 81.209
|
1799 |
+
- type: map_at_5
|
1800 |
+
value: 83.085
|
1801 |
+
- type: mrr_at_1
|
1802 |
+
value: 81.02000000000001
|
1803 |
+
- type: mrr_at_10
|
1804 |
+
value: 87.263
|
1805 |
+
- type: mrr_at_100
|
1806 |
+
value: 87.36
|
1807 |
+
- type: mrr_at_1000
|
1808 |
+
value: 87.36
|
1809 |
+
- type: mrr_at_3
|
1810 |
+
value: 86.235
|
1811 |
+
- type: mrr_at_5
|
1812 |
+
value: 86.945
|
1813 |
+
- type: ndcg_at_1
|
1814 |
+
value: 81.01
|
1815 |
+
- type: ndcg_at_10
|
1816 |
+
value: 87.99900000000001
|
1817 |
+
- type: ndcg_at_100
|
1818 |
+
value: 89.217
|
1819 |
+
- type: ndcg_at_1000
|
1820 |
+
value: 89.33
|
1821 |
+
- type: ndcg_at_3
|
1822 |
+
value: 85.053
|
1823 |
+
- type: ndcg_at_5
|
1824 |
+
value: 86.703
|
1825 |
+
- type: precision_at_1
|
1826 |
+
value: 81.01
|
1827 |
+
- type: precision_at_10
|
1828 |
+
value: 13.336
|
1829 |
+
- type: precision_at_100
|
1830 |
+
value: 1.52
|
1831 |
+
- type: precision_at_1000
|
1832 |
+
value: 0.156
|
1833 |
+
- type: precision_at_3
|
1834 |
+
value: 37.14
|
1835 |
+
- type: precision_at_5
|
1836 |
+
value: 24.44
|
1837 |
+
- type: recall_at_1
|
1838 |
+
value: 70.402
|
1839 |
+
- type: recall_at_10
|
1840 |
+
value: 95.214
|
1841 |
+
- type: recall_at_100
|
1842 |
+
value: 99.438
|
1843 |
+
- type: recall_at_1000
|
1844 |
+
value: 99.928
|
1845 |
+
- type: recall_at_3
|
1846 |
+
value: 86.75699999999999
|
1847 |
+
- type: recall_at_5
|
1848 |
+
value: 91.44099999999999
|
1849 |
+
- task:
|
1850 |
+
type: Clustering
|
1851 |
+
dataset:
|
1852 |
+
type: mteb/reddit-clustering
|
1853 |
+
name: MTEB RedditClustering
|
1854 |
+
config: default
|
1855 |
+
split: test
|
1856 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1857 |
+
metrics:
|
1858 |
+
- type: v_measure
|
1859 |
+
value: 56.51721502758904
|
1860 |
+
- task:
|
1861 |
+
type: Clustering
|
1862 |
+
dataset:
|
1863 |
+
type: mteb/reddit-clustering-p2p
|
1864 |
+
name: MTEB RedditClusteringP2P
|
1865 |
+
config: default
|
1866 |
+
split: test
|
1867 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1868 |
+
metrics:
|
1869 |
+
- type: v_measure
|
1870 |
+
value: 61.054808572333016
|
1871 |
+
- task:
|
1872 |
+
type: Retrieval
|
1873 |
+
dataset:
|
1874 |
+
type: scidocs
|
1875 |
+
name: MTEB SCIDOCS
|
1876 |
+
config: default
|
1877 |
+
split: test
|
1878 |
+
revision: None
|
1879 |
+
metrics:
|
1880 |
+
- type: map_at_1
|
1881 |
+
value: 4.578
|
1882 |
+
- type: map_at_10
|
1883 |
+
value: 11.036999999999999
|
1884 |
+
- type: map_at_100
|
1885 |
+
value: 12.879999999999999
|
1886 |
+
- type: map_at_1000
|
1887 |
+
value: 13.150999999999998
|
1888 |
+
- type: map_at_3
|
1889 |
+
value: 8.133
|
1890 |
+
- type: map_at_5
|
1891 |
+
value: 9.559
|
1892 |
+
- type: mrr_at_1
|
1893 |
+
value: 22.6
|
1894 |
+
- type: mrr_at_10
|
1895 |
+
value: 32.68
|
1896 |
+
- type: mrr_at_100
|
1897 |
+
value: 33.789
|
1898 |
+
- type: mrr_at_1000
|
1899 |
+
value: 33.854
|
1900 |
+
- type: mrr_at_3
|
1901 |
+
value: 29.7
|
1902 |
+
- type: mrr_at_5
|
1903 |
+
value: 31.480000000000004
|
1904 |
+
- type: ndcg_at_1
|
1905 |
+
value: 22.6
|
1906 |
+
- type: ndcg_at_10
|
1907 |
+
value: 18.616
|
1908 |
+
- type: ndcg_at_100
|
1909 |
+
value: 25.883
|
1910 |
+
- type: ndcg_at_1000
|
1911 |
+
value: 30.944
|
1912 |
+
- type: ndcg_at_3
|
1913 |
+
value: 18.136
|
1914 |
+
- type: ndcg_at_5
|
1915 |
+
value: 15.625
|
1916 |
+
- type: precision_at_1
|
1917 |
+
value: 22.6
|
1918 |
+
- type: precision_at_10
|
1919 |
+
value: 9.48
|
1920 |
+
- type: precision_at_100
|
1921 |
+
value: 1.991
|
1922 |
+
- type: precision_at_1000
|
1923 |
+
value: 0.321
|
1924 |
+
- type: precision_at_3
|
1925 |
+
value: 16.8
|
1926 |
+
- type: precision_at_5
|
1927 |
+
value: 13.54
|
1928 |
+
- type: recall_at_1
|
1929 |
+
value: 4.578
|
1930 |
+
- type: recall_at_10
|
1931 |
+
value: 19.213
|
1932 |
+
- type: recall_at_100
|
1933 |
+
value: 40.397
|
1934 |
+
- type: recall_at_1000
|
1935 |
+
value: 65.2
|
1936 |
+
- type: recall_at_3
|
1937 |
+
value: 10.208
|
1938 |
+
- type: recall_at_5
|
1939 |
+
value: 13.718
|
1940 |
+
- task:
|
1941 |
+
type: STS
|
1942 |
+
dataset:
|
1943 |
+
type: mteb/sickr-sts
|
1944 |
+
name: MTEB SICK-R
|
1945 |
+
config: default
|
1946 |
+
split: test
|
1947 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1948 |
+
metrics:
|
1949 |
+
- type: cos_sim_pearson
|
1950 |
+
value: 83.44288351714071
|
1951 |
+
- type: cos_sim_spearman
|
1952 |
+
value: 79.37995604564952
|
1953 |
+
- type: euclidean_pearson
|
1954 |
+
value: 81.1078874670718
|
1955 |
+
- type: euclidean_spearman
|
1956 |
+
value: 79.37995905980499
|
1957 |
+
- type: manhattan_pearson
|
1958 |
+
value: 81.03697527288986
|
1959 |
+
- type: manhattan_spearman
|
1960 |
+
value: 79.33490235296236
|
1961 |
+
- task:
|
1962 |
+
type: STS
|
1963 |
+
dataset:
|
1964 |
+
type: mteb/sts12-sts
|
1965 |
+
name: MTEB STS12
|
1966 |
+
config: default
|
1967 |
+
split: test
|
1968 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1969 |
+
metrics:
|
1970 |
+
- type: cos_sim_pearson
|
1971 |
+
value: 84.95557650436523
|
1972 |
+
- type: cos_sim_spearman
|
1973 |
+
value: 78.5190672399868
|
1974 |
+
- type: euclidean_pearson
|
1975 |
+
value: 81.58064025904707
|
1976 |
+
- type: euclidean_spearman
|
1977 |
+
value: 78.5190672399868
|
1978 |
+
- type: manhattan_pearson
|
1979 |
+
value: 81.52857930619889
|
1980 |
+
- type: manhattan_spearman
|
1981 |
+
value: 78.50421361308034
|
1982 |
+
- task:
|
1983 |
+
type: STS
|
1984 |
+
dataset:
|
1985 |
+
type: mteb/sts13-sts
|
1986 |
+
name: MTEB STS13
|
1987 |
+
config: default
|
1988 |
+
split: test
|
1989 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1990 |
+
metrics:
|
1991 |
+
- type: cos_sim_pearson
|
1992 |
+
value: 84.79128416228737
|
1993 |
+
- type: cos_sim_spearman
|
1994 |
+
value: 86.05402451477147
|
1995 |
+
- type: euclidean_pearson
|
1996 |
+
value: 85.46280267054289
|
1997 |
+
- type: euclidean_spearman
|
1998 |
+
value: 86.05402451477147
|
1999 |
+
- type: manhattan_pearson
|
2000 |
+
value: 85.46278563858236
|
2001 |
+
- type: manhattan_spearman
|
2002 |
+
value: 86.08079590861004
|
2003 |
+
- task:
|
2004 |
+
type: STS
|
2005 |
+
dataset:
|
2006 |
+
type: mteb/sts14-sts
|
2007 |
+
name: MTEB STS14
|
2008 |
+
config: default
|
2009 |
+
split: test
|
2010 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2011 |
+
metrics:
|
2012 |
+
- type: cos_sim_pearson
|
2013 |
+
value: 83.20623089568763
|
2014 |
+
- type: cos_sim_spearman
|
2015 |
+
value: 81.53786907061009
|
2016 |
+
- type: euclidean_pearson
|
2017 |
+
value: 82.82272250091494
|
2018 |
+
- type: euclidean_spearman
|
2019 |
+
value: 81.53786907061009
|
2020 |
+
- type: manhattan_pearson
|
2021 |
+
value: 82.78850494027013
|
2022 |
+
- type: manhattan_spearman
|
2023 |
+
value: 81.5135618083407
|
2024 |
+
- task:
|
2025 |
+
type: STS
|
2026 |
+
dataset:
|
2027 |
+
type: mteb/sts15-sts
|
2028 |
+
name: MTEB STS15
|
2029 |
+
config: default
|
2030 |
+
split: test
|
2031 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2032 |
+
metrics:
|
2033 |
+
- type: cos_sim_pearson
|
2034 |
+
value: 85.46366618397936
|
2035 |
+
- type: cos_sim_spearman
|
2036 |
+
value: 86.96566013336908
|
2037 |
+
- type: euclidean_pearson
|
2038 |
+
value: 86.62651697548931
|
2039 |
+
- type: euclidean_spearman
|
2040 |
+
value: 86.96565526364454
|
2041 |
+
- type: manhattan_pearson
|
2042 |
+
value: 86.58812160258009
|
2043 |
+
- type: manhattan_spearman
|
2044 |
+
value: 86.9336484321288
|
2045 |
+
- task:
|
2046 |
+
type: STS
|
2047 |
+
dataset:
|
2048 |
+
type: mteb/sts16-sts
|
2049 |
+
name: MTEB STS16
|
2050 |
+
config: default
|
2051 |
+
split: test
|
2052 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2053 |
+
metrics:
|
2054 |
+
- type: cos_sim_pearson
|
2055 |
+
value: 82.51858358641559
|
2056 |
+
- type: cos_sim_spearman
|
2057 |
+
value: 84.7652527954999
|
2058 |
+
- type: euclidean_pearson
|
2059 |
+
value: 84.23914783766861
|
2060 |
+
- type: euclidean_spearman
|
2061 |
+
value: 84.7652527954999
|
2062 |
+
- type: manhattan_pearson
|
2063 |
+
value: 84.22749648503171
|
2064 |
+
- type: manhattan_spearman
|
2065 |
+
value: 84.74527996746386
|
2066 |
+
- task:
|
2067 |
+
type: STS
|
2068 |
+
dataset:
|
2069 |
+
type: mteb/sts17-crosslingual-sts
|
2070 |
+
name: MTEB STS17 (en-en)
|
2071 |
+
config: en-en
|
2072 |
+
split: test
|
2073 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2074 |
+
metrics:
|
2075 |
+
- type: cos_sim_pearson
|
2076 |
+
value: 87.28026563313065
|
2077 |
+
- type: cos_sim_spearman
|
2078 |
+
value: 87.46928143824915
|
2079 |
+
- type: euclidean_pearson
|
2080 |
+
value: 88.30558762000372
|
2081 |
+
- type: euclidean_spearman
|
2082 |
+
value: 87.46928143824915
|
2083 |
+
- type: manhattan_pearson
|
2084 |
+
value: 88.10513330809331
|
2085 |
+
- type: manhattan_spearman
|
2086 |
+
value: 87.21069787834173
|
2087 |
+
- task:
|
2088 |
+
type: STS
|
2089 |
+
dataset:
|
2090 |
+
type: mteb/sts22-crosslingual-sts
|
2091 |
+
name: MTEB STS22 (en)
|
2092 |
+
config: en
|
2093 |
+
split: test
|
2094 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2095 |
+
metrics:
|
2096 |
+
- type: cos_sim_pearson
|
2097 |
+
value: 62.376497134587375
|
2098 |
+
- type: cos_sim_spearman
|
2099 |
+
value: 65.0159550112516
|
2100 |
+
- type: euclidean_pearson
|
2101 |
+
value: 65.64572120879598
|
2102 |
+
- type: euclidean_spearman
|
2103 |
+
value: 65.0159550112516
|
2104 |
+
- type: manhattan_pearson
|
2105 |
+
value: 65.88143604989976
|
2106 |
+
- type: manhattan_spearman
|
2107 |
+
value: 65.17547297222434
|
2108 |
+
- task:
|
2109 |
+
type: STS
|
2110 |
+
dataset:
|
2111 |
+
type: mteb/stsbenchmark-sts
|
2112 |
+
name: MTEB STSBenchmark
|
2113 |
+
config: default
|
2114 |
+
split: test
|
2115 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2116 |
+
metrics:
|
2117 |
+
- type: cos_sim_pearson
|
2118 |
+
value: 84.22876368947644
|
2119 |
+
- type: cos_sim_spearman
|
2120 |
+
value: 85.46935577445318
|
2121 |
+
- type: euclidean_pearson
|
2122 |
+
value: 85.32830231392005
|
2123 |
+
- type: euclidean_spearman
|
2124 |
+
value: 85.46935577445318
|
2125 |
+
- type: manhattan_pearson
|
2126 |
+
value: 85.30353211758495
|
2127 |
+
- type: manhattan_spearman
|
2128 |
+
value: 85.42821085956945
|
2129 |
+
- task:
|
2130 |
+
type: Reranking
|
2131 |
+
dataset:
|
2132 |
+
type: mteb/scidocs-reranking
|
2133 |
+
name: MTEB SciDocsRR
|
2134 |
+
config: default
|
2135 |
+
split: test
|
2136 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2137 |
+
metrics:
|
2138 |
+
- type: map
|
2139 |
+
value: 80.60986667767133
|
2140 |
+
- type: mrr
|
2141 |
+
value: 94.29432314236236
|
2142 |
+
- task:
|
2143 |
+
type: Retrieval
|
2144 |
+
dataset:
|
2145 |
+
type: scifact
|
2146 |
+
name: MTEB SciFact
|
2147 |
+
config: default
|
2148 |
+
split: test
|
2149 |
+
revision: None
|
2150 |
+
metrics:
|
2151 |
+
- type: map_at_1
|
2152 |
+
value: 54.528
|
2153 |
+
- type: map_at_10
|
2154 |
+
value: 65.187
|
2155 |
+
- type: map_at_100
|
2156 |
+
value: 65.62599999999999
|
2157 |
+
- type: map_at_1000
|
2158 |
+
value: 65.657
|
2159 |
+
- type: map_at_3
|
2160 |
+
value: 62.352
|
2161 |
+
- type: map_at_5
|
2162 |
+
value: 64.025
|
2163 |
+
- type: mrr_at_1
|
2164 |
+
value: 57.333
|
2165 |
+
- type: mrr_at_10
|
2166 |
+
value: 66.577
|
2167 |
+
- type: mrr_at_100
|
2168 |
+
value: 66.88
|
2169 |
+
- type: mrr_at_1000
|
2170 |
+
value: 66.908
|
2171 |
+
- type: mrr_at_3
|
2172 |
+
value: 64.556
|
2173 |
+
- type: mrr_at_5
|
2174 |
+
value: 65.739
|
2175 |
+
- type: ndcg_at_1
|
2176 |
+
value: 57.333
|
2177 |
+
- type: ndcg_at_10
|
2178 |
+
value: 70.275
|
2179 |
+
- type: ndcg_at_100
|
2180 |
+
value: 72.136
|
2181 |
+
- type: ndcg_at_1000
|
2182 |
+
value: 72.963
|
2183 |
+
- type: ndcg_at_3
|
2184 |
+
value: 65.414
|
2185 |
+
- type: ndcg_at_5
|
2186 |
+
value: 67.831
|
2187 |
+
- type: precision_at_1
|
2188 |
+
value: 57.333
|
2189 |
+
- type: precision_at_10
|
2190 |
+
value: 9.5
|
2191 |
+
- type: precision_at_100
|
2192 |
+
value: 1.057
|
2193 |
+
- type: precision_at_1000
|
2194 |
+
value: 0.11199999999999999
|
2195 |
+
- type: precision_at_3
|
2196 |
+
value: 25.778000000000002
|
2197 |
+
- type: precision_at_5
|
2198 |
+
value: 17.2
|
2199 |
+
- type: recall_at_1
|
2200 |
+
value: 54.528
|
2201 |
+
- type: recall_at_10
|
2202 |
+
value: 84.356
|
2203 |
+
- type: recall_at_100
|
2204 |
+
value: 92.833
|
2205 |
+
- type: recall_at_1000
|
2206 |
+
value: 99.333
|
2207 |
+
- type: recall_at_3
|
2208 |
+
value: 71.283
|
2209 |
+
- type: recall_at_5
|
2210 |
+
value: 77.14999999999999
|
2211 |
+
- task:
|
2212 |
+
type: PairClassification
|
2213 |
+
dataset:
|
2214 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2215 |
+
name: MTEB SprintDuplicateQuestions
|
2216 |
+
config: default
|
2217 |
+
split: test
|
2218 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2219 |
+
metrics:
|
2220 |
+
- type: cos_sim_accuracy
|
2221 |
+
value: 99.74158415841585
|
2222 |
+
- type: cos_sim_ap
|
2223 |
+
value: 92.90048959850317
|
2224 |
+
- type: cos_sim_f1
|
2225 |
+
value: 86.35650810245687
|
2226 |
+
- type: cos_sim_precision
|
2227 |
+
value: 90.4709748083242
|
2228 |
+
- type: cos_sim_recall
|
2229 |
+
value: 82.6
|
2230 |
+
- type: dot_accuracy
|
2231 |
+
value: 99.74158415841585
|
2232 |
+
- type: dot_ap
|
2233 |
+
value: 92.90048959850317
|
2234 |
+
- type: dot_f1
|
2235 |
+
value: 86.35650810245687
|
2236 |
+
- type: dot_precision
|
2237 |
+
value: 90.4709748083242
|
2238 |
+
- type: dot_recall
|
2239 |
+
value: 82.6
|
2240 |
+
- type: euclidean_accuracy
|
2241 |
+
value: 99.74158415841585
|
2242 |
+
- type: euclidean_ap
|
2243 |
+
value: 92.90048959850317
|
2244 |
+
- type: euclidean_f1
|
2245 |
+
value: 86.35650810245687
|
2246 |
+
- type: euclidean_precision
|
2247 |
+
value: 90.4709748083242
|
2248 |
+
- type: euclidean_recall
|
2249 |
+
value: 82.6
|
2250 |
+
- type: manhattan_accuracy
|
2251 |
+
value: 99.74158415841585
|
2252 |
+
- type: manhattan_ap
|
2253 |
+
value: 92.87344692947894
|
2254 |
+
- type: manhattan_f1
|
2255 |
+
value: 86.38497652582159
|
2256 |
+
- type: manhattan_precision
|
2257 |
+
value: 90.29443838604145
|
2258 |
+
- type: manhattan_recall
|
2259 |
+
value: 82.8
|
2260 |
+
- type: max_accuracy
|
2261 |
+
value: 99.74158415841585
|
2262 |
+
- type: max_ap
|
2263 |
+
value: 92.90048959850317
|
2264 |
+
- type: max_f1
|
2265 |
+
value: 86.38497652582159
|
2266 |
+
- task:
|
2267 |
+
type: Clustering
|
2268 |
+
dataset:
|
2269 |
+
type: mteb/stackexchange-clustering
|
2270 |
+
name: MTEB StackExchangeClustering
|
2271 |
+
config: default
|
2272 |
+
split: test
|
2273 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2274 |
+
metrics:
|
2275 |
+
- type: v_measure
|
2276 |
+
value: 63.191648770424216
|
2277 |
+
- task:
|
2278 |
+
type: Clustering
|
2279 |
+
dataset:
|
2280 |
+
type: mteb/stackexchange-clustering-p2p
|
2281 |
+
name: MTEB StackExchangeClusteringP2P
|
2282 |
+
config: default
|
2283 |
+
split: test
|
2284 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2285 |
+
metrics:
|
2286 |
+
- type: v_measure
|
2287 |
+
value: 34.02944668730218
|
2288 |
+
- task:
|
2289 |
+
type: Reranking
|
2290 |
+
dataset:
|
2291 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2292 |
+
name: MTEB StackOverflowDupQuestions
|
2293 |
+
config: default
|
2294 |
+
split: test
|
2295 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2296 |
+
metrics:
|
2297 |
+
- type: map
|
2298 |
+
value: 50.466386167525265
|
2299 |
+
- type: mrr
|
2300 |
+
value: 51.19071492233257
|
2301 |
+
- task:
|
2302 |
+
type: Summarization
|
2303 |
+
dataset:
|
2304 |
+
type: mteb/summeval
|
2305 |
+
name: MTEB SummEval
|
2306 |
+
config: default
|
2307 |
+
split: test
|
2308 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2309 |
+
metrics:
|
2310 |
+
- type: cos_sim_pearson
|
2311 |
+
value: 30.198022505886435
|
2312 |
+
- type: cos_sim_spearman
|
2313 |
+
value: 30.40170257939193
|
2314 |
+
- type: dot_pearson
|
2315 |
+
value: 30.198015316402614
|
2316 |
+
- type: dot_spearman
|
2317 |
+
value: 30.40170257939193
|
2318 |
+
- task:
|
2319 |
+
type: Retrieval
|
2320 |
+
dataset:
|
2321 |
+
type: trec-covid
|
2322 |
+
name: MTEB TRECCOVID
|
2323 |
+
config: default
|
2324 |
+
split: test
|
2325 |
+
revision: None
|
2326 |
+
metrics:
|
2327 |
+
- type: map_at_1
|
2328 |
+
value: 0.242
|
2329 |
+
- type: map_at_10
|
2330 |
+
value: 2.17
|
2331 |
+
- type: map_at_100
|
2332 |
+
value: 12.221
|
2333 |
+
- type: map_at_1000
|
2334 |
+
value: 28.63
|
2335 |
+
- type: map_at_3
|
2336 |
+
value: 0.728
|
2337 |
+
- type: map_at_5
|
2338 |
+
value: 1.185
|
2339 |
+
- type: mrr_at_1
|
2340 |
+
value: 94
|
2341 |
+
- type: mrr_at_10
|
2342 |
+
value: 97
|
2343 |
+
- type: mrr_at_100
|
2344 |
+
value: 97
|
2345 |
+
- type: mrr_at_1000
|
2346 |
+
value: 97
|
2347 |
+
- type: mrr_at_3
|
2348 |
+
value: 97
|
2349 |
+
- type: mrr_at_5
|
2350 |
+
value: 97
|
2351 |
+
- type: ndcg_at_1
|
2352 |
+
value: 89
|
2353 |
+
- type: ndcg_at_10
|
2354 |
+
value: 82.30499999999999
|
2355 |
+
- type: ndcg_at_100
|
2356 |
+
value: 61.839999999999996
|
2357 |
+
- type: ndcg_at_1000
|
2358 |
+
value: 53.381
|
2359 |
+
- type: ndcg_at_3
|
2360 |
+
value: 88.877
|
2361 |
+
- type: ndcg_at_5
|
2362 |
+
value: 86.05199999999999
|
2363 |
+
- type: precision_at_1
|
2364 |
+
value: 94
|
2365 |
+
- type: precision_at_10
|
2366 |
+
value: 87
|
2367 |
+
- type: precision_at_100
|
2368 |
+
value: 63.38
|
2369 |
+
- type: precision_at_1000
|
2370 |
+
value: 23.498
|
2371 |
+
- type: precision_at_3
|
2372 |
+
value: 94
|
2373 |
+
- type: precision_at_5
|
2374 |
+
value: 92
|
2375 |
+
- type: recall_at_1
|
2376 |
+
value: 0.242
|
2377 |
+
- type: recall_at_10
|
2378 |
+
value: 2.302
|
2379 |
+
- type: recall_at_100
|
2380 |
+
value: 14.979000000000001
|
2381 |
+
- type: recall_at_1000
|
2382 |
+
value: 49.638
|
2383 |
+
- type: recall_at_3
|
2384 |
+
value: 0.753
|
2385 |
+
- type: recall_at_5
|
2386 |
+
value: 1.226
|
2387 |
+
- task:
|
2388 |
+
type: Retrieval
|
2389 |
+
dataset:
|
2390 |
+
type: webis-touche2020
|
2391 |
+
name: MTEB Touche2020
|
2392 |
+
config: default
|
2393 |
+
split: test
|
2394 |
+
revision: None
|
2395 |
+
metrics:
|
2396 |
+
- type: map_at_1
|
2397 |
+
value: 3.006
|
2398 |
+
- type: map_at_10
|
2399 |
+
value: 11.805
|
2400 |
+
- type: map_at_100
|
2401 |
+
value: 18.146
|
2402 |
+
- type: map_at_1000
|
2403 |
+
value: 19.788
|
2404 |
+
- type: map_at_3
|
2405 |
+
value: 5.914
|
2406 |
+
- type: map_at_5
|
2407 |
+
value: 8.801
|
2408 |
+
- type: mrr_at_1
|
2409 |
+
value: 40.816
|
2410 |
+
- type: mrr_at_10
|
2411 |
+
value: 56.36600000000001
|
2412 |
+
- type: mrr_at_100
|
2413 |
+
value: 56.721999999999994
|
2414 |
+
- type: mrr_at_1000
|
2415 |
+
value: 56.721999999999994
|
2416 |
+
- type: mrr_at_3
|
2417 |
+
value: 52.041000000000004
|
2418 |
+
- type: mrr_at_5
|
2419 |
+
value: 54.796
|
2420 |
+
- type: ndcg_at_1
|
2421 |
+
value: 37.755
|
2422 |
+
- type: ndcg_at_10
|
2423 |
+
value: 29.863
|
2424 |
+
- type: ndcg_at_100
|
2425 |
+
value: 39.571
|
2426 |
+
- type: ndcg_at_1000
|
2427 |
+
value: 51.385999999999996
|
2428 |
+
- type: ndcg_at_3
|
2429 |
+
value: 32.578
|
2430 |
+
- type: ndcg_at_5
|
2431 |
+
value: 32.351
|
2432 |
+
- type: precision_at_1
|
2433 |
+
value: 40.816
|
2434 |
+
- type: precision_at_10
|
2435 |
+
value: 26.531
|
2436 |
+
- type: precision_at_100
|
2437 |
+
value: 7.796
|
2438 |
+
- type: precision_at_1000
|
2439 |
+
value: 1.555
|
2440 |
+
- type: precision_at_3
|
2441 |
+
value: 32.653
|
2442 |
+
- type: precision_at_5
|
2443 |
+
value: 33.061
|
2444 |
+
- type: recall_at_1
|
2445 |
+
value: 3.006
|
2446 |
+
- type: recall_at_10
|
2447 |
+
value: 18.738
|
2448 |
+
- type: recall_at_100
|
2449 |
+
value: 48.058
|
2450 |
+
- type: recall_at_1000
|
2451 |
+
value: 83.41300000000001
|
2452 |
+
- type: recall_at_3
|
2453 |
+
value: 7.166
|
2454 |
+
- type: recall_at_5
|
2455 |
+
value: 12.102
|
2456 |
+
- task:
|
2457 |
+
type: Classification
|
2458 |
+
dataset:
|
2459 |
+
type: mteb/toxic_conversations_50k
|
2460 |
+
name: MTEB ToxicConversationsClassification
|
2461 |
+
config: default
|
2462 |
+
split: test
|
2463 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2464 |
+
metrics:
|
2465 |
+
- type: accuracy
|
2466 |
+
value: 71.4178
|
2467 |
+
- type: ap
|
2468 |
+
value: 14.648781342150446
|
2469 |
+
- type: f1
|
2470 |
+
value: 55.07299194946378
|
2471 |
+
- task:
|
2472 |
+
type: Classification
|
2473 |
+
dataset:
|
2474 |
+
type: mteb/tweet_sentiment_extraction
|
2475 |
+
name: MTEB TweetSentimentExtractionClassification
|
2476 |
+
config: default
|
2477 |
+
split: test
|
2478 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2479 |
+
metrics:
|
2480 |
+
- type: accuracy
|
2481 |
+
value: 60.919637804187886
|
2482 |
+
- type: f1
|
2483 |
+
value: 61.24122013967399
|
2484 |
+
- task:
|
2485 |
+
type: Clustering
|
2486 |
+
dataset:
|
2487 |
+
type: mteb/twentynewsgroups-clustering
|
2488 |
+
name: MTEB TwentyNewsgroupsClustering
|
2489 |
+
config: default
|
2490 |
+
split: test
|
2491 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2492 |
+
metrics:
|
2493 |
+
- type: v_measure
|
2494 |
+
value: 49.207896583685695
|
2495 |
+
- task:
|
2496 |
+
type: PairClassification
|
2497 |
+
dataset:
|
2498 |
+
type: mteb/twittersemeval2015-pairclassification
|
2499 |
+
name: MTEB TwitterSemEval2015
|
2500 |
+
config: default
|
2501 |
+
split: test
|
2502 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2503 |
+
metrics:
|
2504 |
+
- type: cos_sim_accuracy
|
2505 |
+
value: 86.23114978840078
|
2506 |
+
- type: cos_sim_ap
|
2507 |
+
value: 74.26624727825818
|
2508 |
+
- type: cos_sim_f1
|
2509 |
+
value: 68.72377190817083
|
2510 |
+
- type: cos_sim_precision
|
2511 |
+
value: 64.56400742115028
|
2512 |
+
- type: cos_sim_recall
|
2513 |
+
value: 73.45646437994723
|
2514 |
+
- type: dot_accuracy
|
2515 |
+
value: 86.23114978840078
|
2516 |
+
- type: dot_ap
|
2517 |
+
value: 74.26624032659652
|
2518 |
+
- type: dot_f1
|
2519 |
+
value: 68.72377190817083
|
2520 |
+
- type: dot_precision
|
2521 |
+
value: 64.56400742115028
|
2522 |
+
- type: dot_recall
|
2523 |
+
value: 73.45646437994723
|
2524 |
+
- type: euclidean_accuracy
|
2525 |
+
value: 86.23114978840078
|
2526 |
+
- type: euclidean_ap
|
2527 |
+
value: 74.26624714480556
|
2528 |
+
- type: euclidean_f1
|
2529 |
+
value: 68.72377190817083
|
2530 |
+
- type: euclidean_precision
|
2531 |
+
value: 64.56400742115028
|
2532 |
+
- type: euclidean_recall
|
2533 |
+
value: 73.45646437994723
|
2534 |
+
- type: manhattan_accuracy
|
2535 |
+
value: 86.16558383501221
|
2536 |
+
- type: manhattan_ap
|
2537 |
+
value: 74.2091943976357
|
2538 |
+
- type: manhattan_f1
|
2539 |
+
value: 68.64221520524654
|
2540 |
+
- type: manhattan_precision
|
2541 |
+
value: 63.59135913591359
|
2542 |
+
- type: manhattan_recall
|
2543 |
+
value: 74.5646437994723
|
2544 |
+
- type: max_accuracy
|
2545 |
+
value: 86.23114978840078
|
2546 |
+
- type: max_ap
|
2547 |
+
value: 74.26624727825818
|
2548 |
+
- type: max_f1
|
2549 |
+
value: 68.72377190817083
|
2550 |
+
- task:
|
2551 |
+
type: PairClassification
|
2552 |
+
dataset:
|
2553 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2554 |
+
name: MTEB TwitterURLCorpus
|
2555 |
+
config: default
|
2556 |
+
split: test
|
2557 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2558 |
+
metrics:
|
2559 |
+
- type: cos_sim_accuracy
|
2560 |
+
value: 89.3681841114604
|
2561 |
+
- type: cos_sim_ap
|
2562 |
+
value: 86.65166387498546
|
2563 |
+
- type: cos_sim_f1
|
2564 |
+
value: 79.02581944698774
|
2565 |
+
- type: cos_sim_precision
|
2566 |
+
value: 75.35796605434099
|
2567 |
+
- type: cos_sim_recall
|
2568 |
+
value: 83.06898675700647
|
2569 |
+
- type: dot_accuracy
|
2570 |
+
value: 89.3681841114604
|
2571 |
+
- type: dot_ap
|
2572 |
+
value: 86.65166019802056
|
2573 |
+
- type: dot_f1
|
2574 |
+
value: 79.02581944698774
|
2575 |
+
- type: dot_precision
|
2576 |
+
value: 75.35796605434099
|
2577 |
+
- type: dot_recall
|
2578 |
+
value: 83.06898675700647
|
2579 |
+
- type: euclidean_accuracy
|
2580 |
+
value: 89.3681841114604
|
2581 |
+
- type: euclidean_ap
|
2582 |
+
value: 86.65166462876266
|
2583 |
+
- type: euclidean_f1
|
2584 |
+
value: 79.02581944698774
|
2585 |
+
- type: euclidean_precision
|
2586 |
+
value: 75.35796605434099
|
2587 |
+
- type: euclidean_recall
|
2588 |
+
value: 83.06898675700647
|
2589 |
+
- type: manhattan_accuracy
|
2590 |
+
value: 89.36624364497226
|
2591 |
+
- type: manhattan_ap
|
2592 |
+
value: 86.65076471274106
|
2593 |
+
- type: manhattan_f1
|
2594 |
+
value: 79.07408783532733
|
2595 |
+
- type: manhattan_precision
|
2596 |
+
value: 76.41102972856527
|
2597 |
+
- type: manhattan_recall
|
2598 |
+
value: 81.92947336002464
|
2599 |
+
- type: max_accuracy
|
2600 |
+
value: 89.3681841114604
|
2601 |
+
- type: max_ap
|
2602 |
+
value: 86.65166462876266
|
2603 |
+
- type: max_f1
|
2604 |
+
value: 79.07408783532733
|
2605 |
license: apache-2.0
|
2606 |
+
language:
|
2607 |
+
- en
|
2608 |
---
|
2609 |
+
|
2610 |
+
# nomic-embed-text-v1.5: Resizable Production Embeddings with Matryoshka Representation Learning
|
2611 |
+
|
2612 |
+
**Exciting Update!**: `nomic-embed-text-v1.5` is now multimodal! [nomic-embed-vision-v1](https://huggingface.co/nomic-ai/nomic-embed-vision-v1.5) is aligned to the embedding space of `nomic-embed-text-v1.5`, meaning any text embedding is multimodal!
|
2613 |
+
|
2614 |
+
## Usage
|
2615 |
+
|
2616 |
+
**Important**: the text prompt *must* include a *task instruction prefix*, instructing the model which task is being performed.
|
2617 |
+
|
2618 |
+
For example, if you are implementing a RAG application, you embed your documents as `search_document: <text here>` and embed your user queries as `search_query: <text here>`.
|
2619 |
+
|
2620 |
+
## Task instruction prefixes
|
2621 |
+
|
2622 |
+
### `search_document`
|
2623 |
+
|
2624 |
+
#### Purpose: embed texts as documents from a dataset
|
2625 |
+
|
2626 |
+
This prefix is used for embedding texts as documents, for example as documents for a RAG index.
|
2627 |
+
|
2628 |
+
```python
|
2629 |
+
from sentence_transformers import SentenceTransformer
|
2630 |
+
|
2631 |
+
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
|
2632 |
+
sentences = ['search_document: TSNE is a dimensionality reduction algorithm created by Laurens van Der Maaten']
|
2633 |
+
embeddings = model.encode(sentences)
|
2634 |
+
print(embeddings)
|
2635 |
+
```
|
2636 |
+
|
2637 |
+
### `search_query`
|
2638 |
+
|
2639 |
+
#### Purpose: embed texts as questions to answer
|
2640 |
+
|
2641 |
+
This prefix is used for embedding texts as questions that documents from a dataset could resolve, for example as queries to be answered by a RAG application.
|
2642 |
+
|
2643 |
+
```python
|
2644 |
+
from sentence_transformers import SentenceTransformer
|
2645 |
+
|
2646 |
+
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
|
2647 |
+
sentences = ['search_query: Who is Laurens van Der Maaten?']
|
2648 |
+
embeddings = model.encode(sentences)
|
2649 |
+
print(embeddings)
|
2650 |
+
```
|
2651 |
+
|
2652 |
+
### `clustering`
|
2653 |
+
|
2654 |
+
#### Purpose: embed texts to group them into clusters
|
2655 |
+
|
2656 |
+
This prefix is used for embedding texts in order to group them into clusters, discover common topics, or remove semantic duplicates.
|
2657 |
+
|
2658 |
+
```python
|
2659 |
+
from sentence_transformers import SentenceTransformer
|
2660 |
+
|
2661 |
+
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
|
2662 |
+
sentences = ['clustering: the quick brown fox']
|
2663 |
+
embeddings = model.encode(sentences)
|
2664 |
+
print(embeddings)
|
2665 |
+
```
|
2666 |
+
|
2667 |
+
### `classification`
|
2668 |
+
|
2669 |
+
#### Purpose: embed texts to classify them
|
2670 |
+
|
2671 |
+
This prefix is used for embedding texts into vectors that will be used as features for a classification model
|
2672 |
+
|
2673 |
+
```python
|
2674 |
+
from sentence_transformers import SentenceTransformer
|
2675 |
+
|
2676 |
+
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
|
2677 |
+
sentences = ['classification: the quick brown fox']
|
2678 |
+
embeddings = model.encode(sentences)
|
2679 |
+
print(embeddings)
|
2680 |
+
```
|
2681 |
+
|
2682 |
+
|
2683 |
+
### Sentence Transformers
|
2684 |
+
```python
|
2685 |
+
import torch.nn.functional as F
|
2686 |
+
from sentence_transformers import SentenceTransformer
|
2687 |
+
|
2688 |
+
matryoshka_dim = 512
|
2689 |
+
|
2690 |
+
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True)
|
2691 |
+
sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?']
|
2692 |
+
embeddings = model.encode(sentences, convert_to_tensor=True)
|
2693 |
+
embeddings = F.layer_norm(embeddings, normalized_shape=(embeddings.shape[1],))
|
2694 |
+
embeddings = embeddings[:, :matryoshka_dim]
|
2695 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
2696 |
+
print(embeddings)
|
2697 |
+
```
|
2698 |
+
|
2699 |
+
### Transformers
|
2700 |
+
|
2701 |
+
```diff
|
2702 |
+
import torch
|
2703 |
+
import torch.nn.functional as F
|
2704 |
+
from transformers import AutoTokenizer, AutoModel
|
2705 |
+
|
2706 |
+
def mean_pooling(model_output, attention_mask):
|
2707 |
+
token_embeddings = model_output[0]
|
2708 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
2709 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
2710 |
+
|
2711 |
+
sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?']
|
2712 |
+
|
2713 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
2714 |
+
model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True, safe_serialization=True)
|
2715 |
+
model.eval()
|
2716 |
+
|
2717 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
2718 |
+
|
2719 |
+
+ matryoshka_dim = 512
|
2720 |
+
|
2721 |
+
with torch.no_grad():
|
2722 |
+
model_output = model(**encoded_input)
|
2723 |
+
|
2724 |
+
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
2725 |
+
+ embeddings = F.layer_norm(embeddings, normalized_shape=(embeddings.shape[1],))
|
2726 |
+
+ embeddings = embeddings[:, :matryoshka_dim]
|
2727 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
2728 |
+
print(embeddings)
|
2729 |
+
```
|
2730 |
+
|
2731 |
+
The model natively supports scaling of the sequence length past 2048 tokens. To do so,
|
2732 |
+
|
2733 |
+
```diff
|
2734 |
+
- tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
2735 |
+
+ tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', model_max_length=8192)
|
2736 |
+
|
2737 |
+
|
2738 |
+
- model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True)
|
2739 |
+
+ model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True, rotary_scaling_factor=2)
|
2740 |
+
```
|
2741 |
+
|
2742 |
+
### Transformers.js
|
2743 |
+
|
2744 |
+
```js
|
2745 |
+
import { pipeline, layer_norm } from '@xenova/transformers';
|
2746 |
+
|
2747 |
+
// Create a feature extraction pipeline
|
2748 |
+
const extractor = await pipeline('feature-extraction', 'nomic-ai/nomic-embed-text-v1.5', {
|
2749 |
+
quantized: false, // Comment out this line to use the quantized version
|
2750 |
+
});
|
2751 |
+
|
2752 |
+
// Define sentences
|
2753 |
+
const texts = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?'];
|
2754 |
+
|
2755 |
+
// Compute sentence embeddings
|
2756 |
+
let embeddings = await extractor(texts, { pooling: 'mean' });
|
2757 |
+
console.log(embeddings); // Tensor of shape [2, 768]
|
2758 |
+
|
2759 |
+
const matryoshka_dim = 512;
|
2760 |
+
embeddings = layer_norm(embeddings, [embeddings.dims[1]])
|
2761 |
+
.slice(null, [0, matryoshka_dim])
|
2762 |
+
.normalize(2, -1);
|
2763 |
+
console.log(embeddings.tolist());
|
2764 |
+
```
|
2765 |
+
|
2766 |
+
|
2767 |
+
## Nomic API
|
2768 |
+
|
2769 |
+
The easiest way to use Nomic Embed is through the Nomic Embedding API.
|
2770 |
+
|
2771 |
+
Generating embeddings with the `nomic` Python client is as easy as
|
2772 |
+
|
2773 |
+
```python
|
2774 |
+
from nomic import embed
|
2775 |
+
|
2776 |
+
output = embed.text(
|
2777 |
+
texts=['Nomic Embedding API', '#keepAIOpen'],
|
2778 |
+
model='nomic-embed-text-v1.5',
|
2779 |
+
task_type='search_document',
|
2780 |
+
dimensionality=256,
|
2781 |
+
)
|
2782 |
+
|
2783 |
+
print(output)
|
2784 |
+
```
|
2785 |
+
|
2786 |
+
For more information, see the [API reference](https://docs.nomic.ai/reference/endpoints/nomic-embed-text)
|
2787 |
+
|
2788 |
+
|
2789 |
+
## Infinity
|
2790 |
+
|
2791 |
+
Usage with [Infinity](https://github.com/michaelfeil/infinity).
|
2792 |
+
|
2793 |
+
```bash
|
2794 |
+
docker run --gpus all -v $PWD/data:/app/.cache -e HF_TOKEN=$HF_TOKEN -p "7997":"7997" \
|
2795 |
+
michaelf34/infinity:0.0.70 \
|
2796 |
+
v2 --model-id nomic-ai/nomic-embed-text-v1.5 --revision "main" --dtype float16 --batch-size 8 --engine torch --port 7997 --no-bettertransformer
|
2797 |
+
```
|
2798 |
+
|
2799 |
+
## Adjusting Dimensionality
|
2800 |
+
|
2801 |
+
`nomic-embed-text-v1.5` is an improvement upon [Nomic Embed](https://huggingface.co/nomic-ai/nomic-embed-text-v1) that utilizes [Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147) which gives developers the flexibility to trade off the embedding size for a negligible reduction in performance.
|
2802 |
+
|
2803 |
+
|
2804 |
+
| Name | SeqLen | Dimension | MTEB |
|
2805 |
+
| :-------------------------------:| :----- | :-------- | :------: |
|
2806 |
+
| nomic-embed-text-v1 | 8192 | 768 | **62.39** |
|
2807 |
+
| nomic-embed-text-v1.5 | 8192 | 768 | 62.28 |
|
2808 |
+
| nomic-embed-text-v1.5 | 8192 | 512 | 61.96 |
|
2809 |
+
| nomic-embed-text-v1.5 | 8192 | 256 | 61.04 |
|
2810 |
+
| nomic-embed-text-v1.5 | 8192 | 128 | 59.34 |
|
2811 |
+
| nomic-embed-text-v1.5 | 8192 | 64 | 56.10 |
|
2812 |
+
|
2813 |
+
|
2814 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/607997c83a565c15675055b3/CRnaHV-c2wMUMZKw72q85.png)
|
2815 |
+
|
2816 |
+
## Training
|
2817 |
+
Click the Nomic Atlas map below to visualize a 5M sample of our contrastive pretraining data!
|
2818 |
+
|
2819 |
+
[![image/webp](https://cdn-uploads.huggingface.co/production/uploads/607997c83a565c15675055b3/pjhJhuNyRfPagRd_c_iUz.webp)](https://atlas.nomic.ai/map/nomic-text-embed-v1-5m-sample)
|
2820 |
+
|
2821 |
+
We train our embedder using a multi-stage training pipeline. Starting from a long-context [BERT model](https://huggingface.co/nomic-ai/nomic-bert-2048),
|
2822 |
+
the first unsupervised contrastive stage trains on a dataset generated from weakly related text pairs, such as question-answer pairs from forums like StackExchange and Quora, title-body pairs from Amazon reviews, and summarizations from news articles.
|
2823 |
+
|
2824 |
+
In the second finetuning stage, higher quality labeled datasets such as search queries and answers from web searches are leveraged. Data curation and hard-example mining is crucial in this stage.
|
2825 |
+
|
2826 |
+
For more details, see the Nomic Embed [Technical Report](https://static.nomic.ai/reports/2024_Nomic_Embed_Text_Technical_Report.pdf) and corresponding [blog post](https://blog.nomic.ai/posts/nomic-embed-matryoshka).
|
2827 |
+
|
2828 |
+
Training data to train the models is released in its entirety. For more details, see the `contrastors` [repository](https://github.com/nomic-ai/contrastors)
|
2829 |
+
|
2830 |
+
|
2831 |
+
# Join the Nomic Community
|
2832 |
+
|
2833 |
+
- Nomic: [https://nomic.ai](https://nomic.ai)
|
2834 |
+
- Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8)
|
2835 |
+
- Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai)
|
2836 |
+
|
2837 |
+
|
2838 |
+
# Citation
|
2839 |
+
|
2840 |
+
If you find the model, dataset, or training code useful, please cite our work
|
2841 |
+
|
2842 |
+
```bibtex
|
2843 |
+
@misc{nussbaum2024nomic,
|
2844 |
+
title={Nomic Embed: Training a Reproducible Long Context Text Embedder},
|
2845 |
+
author={Zach Nussbaum and John X. Morris and Brandon Duderstadt and Andriy Mulyar},
|
2846 |
+
year={2024},
|
2847 |
+
eprint={2402.01613},
|
2848 |
+
archivePrefix={arXiv},
|
2849 |
+
primaryClass={cs.CL}
|
2850 |
+
}
|
2851 |
+
```
|
config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_function": "swiglu",
|
3 |
+
"architectures": [
|
4 |
+
"NomicBertModel"
|
5 |
+
],
|
6 |
+
"attn_pdrop": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "nomic-ai/nomic-bert-2048--configuration_hf_nomic_bert.NomicBertConfig",
|
9 |
+
"AutoModel": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertModel",
|
10 |
+
"AutoModelForMaskedLM": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForPreTraining"
|
11 |
+
},
|
12 |
+
"bos_token_id": null,
|
13 |
+
"causal": false,
|
14 |
+
"dense_seq_output": true,
|
15 |
+
"embd_pdrop": 0.0,
|
16 |
+
"eos_token_id": null,
|
17 |
+
"fused_bias_fc": true,
|
18 |
+
"fused_dropout_add_ln": true,
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"layer_norm_epsilon": 1e-12,
|
21 |
+
"max_trained_positions": 2048,
|
22 |
+
"mlp_fc1_bias": false,
|
23 |
+
"mlp_fc2_bias": false,
|
24 |
+
"model_type": "nomic_bert",
|
25 |
+
"n_embd": 768,
|
26 |
+
"n_head": 12,
|
27 |
+
"n_inner": 3072,
|
28 |
+
"n_layer": 12,
|
29 |
+
"n_positions": 8192,
|
30 |
+
"pad_vocab_size_multiple": 64,
|
31 |
+
"parallel_block": false,
|
32 |
+
"parallel_block_tied_norm": false,
|
33 |
+
"prenorm": false,
|
34 |
+
"qkv_proj_bias": false,
|
35 |
+
"reorder_and_upcast_attn": false,
|
36 |
+
"resid_pdrop": 0.0,
|
37 |
+
"rotary_emb_base": 1000,
|
38 |
+
"rotary_emb_fraction": 1.0,
|
39 |
+
"rotary_emb_interleaved": false,
|
40 |
+
"rotary_emb_scale_base": null,
|
41 |
+
"rotary_scaling_factor": null,
|
42 |
+
"scale_attn_by_inverse_layer_idx": false,
|
43 |
+
"scale_attn_weights": true,
|
44 |
+
"summary_activation": null,
|
45 |
+
"summary_first_dropout": 0.0,
|
46 |
+
"summary_proj_to_labels": true,
|
47 |
+
"summary_type": "cls_index",
|
48 |
+
"summary_use_proj": true,
|
49 |
+
"torch_dtype": "float32",
|
50 |
+
"transformers_version": "4.37.2",
|
51 |
+
"type_vocab_size": 2,
|
52 |
+
"use_cache": true,
|
53 |
+
"use_flash_attn": true,
|
54 |
+
"use_rms_norm": false,
|
55 |
+
"use_xentropy": true,
|
56 |
+
"vocab_size": 30528
|
57 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.4.0.dev0",
|
4 |
+
"transformers": "4.37.2",
|
5 |
+
"pytorch": "2.1.0+cu121"
|
6 |
+
}
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e7d262b1fe5ea350782829496efa831901b77486bbde1cea54a4c822d010d5c
|
3 |
+
size 546938168
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
onnx/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3046cea194c3e309904fc9df6539890df6eefdd200f4ef4deccce8d82aa7acb8
|
3 |
+
size 547602079
|
onnx/model_quantized.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b395d5f27056e5fb64516a8256533bd52384b5a766c426a750b3d64375f1a41
|
3 |
+
size 138424350
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false,
|
4 |
+
"model_args": {
|
5 |
+
"safe_serialization": true
|
6 |
+
}
|
7 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"model_max_length": 8192,
|
49 |
+
"pad_token": "[PAD]",
|
50 |
+
"sep_token": "[SEP]",
|
51 |
+
"strip_accents": null,
|
52 |
+
"tokenize_chinese_chars": true,
|
53 |
+
"tokenizer_class": "BertTokenizer",
|
54 |
+
"unk_token": "[UNK]"
|
55 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|