|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- alignment-handbook |
|
- generated_from_trainer |
|
base_model: microsoft/phi-2 |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: spin-phi2 |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 63.57 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 75.57 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 57.93 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 46.22 |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 73.48 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 53.3 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2 |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# outputs |
|
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co./microsoft/phi-2) using [SPIN](https://github.com/uclaml/SPIN) on [ultrachat_200k dataset](https://huggingface.co./datasets/HuggingFaceH4/ultrachat_200k). |
|
|
|
# What's new |
|
I think SPIN not only can use on a SFT model, but also it can use on a pretrained model. |
|
Therefore, I use SPIN on a pretrained model microsoft/phi-2. And I get a higher score better than origin pretrained model. You can check the [open llm leaderboard](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard). |
|
|
|
But the ultrachat_200k dataset is a alignment dataset for sft model. I think there should use a alignment dataset for pretrained model. |
|
|
|
**I Think the best paradigm for training a conversational Large Language Model (LLM): |
|
pretrain -> dpo(spin) -> sft -> dpo(spin)** |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-07 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1 |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.15.2 |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_amu__spin-phi2) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |61.68| |
|
|AI2 Reasoning Challenge (25-Shot)|63.57| |
|
|HellaSwag (10-Shot) |75.57| |
|
|MMLU (5-Shot) |57.93| |
|
|TruthfulQA (0-shot) |46.22| |
|
|Winogrande (5-shot) |73.48| |
|
|GSM8k (5-shot) |53.30| |
|
|
|
|