File size: 4,749 Bytes
5f567e4
b206227
 
5466830
b206227
 
 
5466830
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f567e4
b206227
 
241d20a
b206227
5040b8b
 
 
 
0123ce0
 
c27dc3b
 
ed108b7
b206227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f08434
b206227
 
 
 
 
 
 
5466830
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---
language:
- en
license: apache-2.0
tags:
- alignment-handbook
- generated_from_trainer
base_model: microsoft/phi-2
pipeline_tag: text-generation
model-index:
- name: spin-phi2
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 63.57
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 75.57
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 57.93
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 46.22
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 73.48
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 53.3
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2
      name: Open LLM Leaderboard
---

# outputs
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co./microsoft/phi-2) using [SPIN](https://github.com/uclaml/SPIN) on [ultrachat_200k dataset](https://huggingface.co./datasets/HuggingFaceH4/ultrachat_200k).

# What's new
I think SPIN not only can use on a SFT model, but also it  can use on a pretrained model. 
Therefore, I use SPIN on a pretrained model microsoft/phi-2. And I get a higher score better than origin pretrained model. You can check the [open llm leaderboard](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard).

But the ultrachat_200k dataset is a alignment dataset for sft model. I think there should use a alignment dataset for pretrained model.

**I Think the best paradigm for training a conversational Large Language Model (LLM):
pretrain -> dpo(spin) -> sft -> dpo(spin)**

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Framework versions

- Transformers 4.37.0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_amu__spin-phi2)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |61.68|
|AI2 Reasoning Challenge (25-Shot)|63.57|
|HellaSwag (10-Shot)              |75.57|
|MMLU (5-Shot)                    |57.93|
|TruthfulQA (0-shot)              |46.22|
|Winogrande (5-shot)              |73.48|
|GSM8k (5-shot)                   |53.30|