ALBADDAWI's picture
Update README.md
3fd4e7d verified
---
tags:
- deepseek-ai/deepseek-math-7b-instruct
- deepseek-ai/deepseek-math-7b-base
- deepseek-ai/deepseek-math-7b-rl
base_model:
- deepseek-ai/deepseek-math-7b-instruct
- deepseek-ai/deepseek-math-7b-base
- deepseek-ai/deepseek-math-7b-rl
- deepseek-ai/deepseek-math-7b-rl
- deepseek-ai/deepseek-math-7b-rl
- deepseek-ai/deepseek-math-7b-rl
license: mit
---
# DeepCode-7B-Aurora-v2
DeepCode-7B-Aurora-v2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [deepseek-ai/deepseek-math-7b-instruct](https://huggingface.co./deepseek-ai/deepseek-math-7b-instruct)
* [deepseek-ai/deepseek-math-7b-base](https://huggingface.co./deepseek-ai/deepseek-math-7b-base)
* [deepseek-ai/deepseek-math-7b-rl](https://huggingface.co./deepseek-ai/deepseek-math-7b-rl)
* [deepseek-ai/deepseek-math-7b-rl](https://huggingface.co./deepseek-ai/deepseek-math-7b-rl)
* [deepseek-ai/deepseek-math-7b-rl](https://huggingface.co./deepseek-ai/deepseek-math-7b-rl)
* [deepseek-ai/deepseek-math-7b-rl](https://huggingface.co./deepseek-ai/deepseek-math-7b-rl)
## 🧩 Configuration
```yaml
models:
- model: deepseek-ai/deepseek-math-7b-rl
# No parameters necessary for base model
- model: deepseek-ai/deepseek-math-7b-instruct
parameters:
density: 0.66
weight: 0.2
- model: deepseek-ai/deepseek-math-7b-base
parameters:
density: 0.57
weight: 0.2
- model: deepseek-ai/deepseek-math-7b-rl
parameters:
density: 0.54
weight: 0.2
- model: deepseek-ai/deepseek-math-7b-rl
parameters:
density: 0.61
weight: 0.2
- model: deepseek-ai/deepseek-math-7b-rl
parameters:
density: 0.65
weight: 0.1
- model: deepseek-ai/deepseek-math-7b-rl
parameters:
density: 0.55
weight: 0.1
merge_method: dare_ties
base_model: deepseek-ai/deepseek-math-7b-rl
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "ALBADDAWI/DeepCode-7B-Aurora-v2"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```