--- tags: - deepseek-ai/deepseek-math-7b-instruct - deepseek-ai/deepseek-math-7b-base - deepseek-ai/deepseek-math-7b-rl base_model: - deepseek-ai/deepseek-math-7b-instruct - deepseek-ai/deepseek-math-7b-base - deepseek-ai/deepseek-math-7b-rl - deepseek-ai/deepseek-math-7b-rl - deepseek-ai/deepseek-math-7b-rl - deepseek-ai/deepseek-math-7b-rl license: mit --- # DeepCode-7B-Aurora-v2 DeepCode-7B-Aurora-v2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [deepseek-ai/deepseek-math-7b-instruct](https://huggingface.co./deepseek-ai/deepseek-math-7b-instruct) * [deepseek-ai/deepseek-math-7b-base](https://huggingface.co./deepseek-ai/deepseek-math-7b-base) * [deepseek-ai/deepseek-math-7b-rl](https://huggingface.co./deepseek-ai/deepseek-math-7b-rl) * [deepseek-ai/deepseek-math-7b-rl](https://huggingface.co./deepseek-ai/deepseek-math-7b-rl) * [deepseek-ai/deepseek-math-7b-rl](https://huggingface.co./deepseek-ai/deepseek-math-7b-rl) * [deepseek-ai/deepseek-math-7b-rl](https://huggingface.co./deepseek-ai/deepseek-math-7b-rl) ## 🧩 Configuration ```yaml models: - model: deepseek-ai/deepseek-math-7b-rl # No parameters necessary for base model - model: deepseek-ai/deepseek-math-7b-instruct parameters: density: 0.66 weight: 0.2 - model: deepseek-ai/deepseek-math-7b-base parameters: density: 0.57 weight: 0.2 - model: deepseek-ai/deepseek-math-7b-rl parameters: density: 0.54 weight: 0.2 - model: deepseek-ai/deepseek-math-7b-rl parameters: density: 0.61 weight: 0.2 - model: deepseek-ai/deepseek-math-7b-rl parameters: density: 0.65 weight: 0.1 - model: deepseek-ai/deepseek-math-7b-rl parameters: density: 0.55 weight: 0.1 merge_method: dare_ties base_model: deepseek-ai/deepseek-math-7b-rl parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "ALBADDAWI/DeepCode-7B-Aurora-v2" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```