|
Here's a step-by-step implementation guide to operationalize the DeepSeek-R1 system: |
|
|
|
```bash |
|
# 1. Clone and initialize repository |
|
git clone https://github.com/deepseek-ai/matrix-system |
|
cd matrix-system |
|
mkdir -p src/core/{gpu_kernels,sparse,solvers} src/api src/storage src/monitoring \ |
|
tests/{unit,stress,chaos} docker docs .github/{ISSUE_TEMPLATE,workflows} |
|
|
|
# 2. Install system dependencies |
|
sudo apt update && sudo apt install -y \ |
|
ocl-icd-opencl-dev \ |
|
nvidia-cuda-toolkit \ |
|
postgresql \ |
|
redis-server \ |
|
python3.11-venv |
|
|
|
# 3. Set up Python environment |
|
python3 -m venv .venv |
|
source .venv/bin/activate |
|
pip install -U pip wheel |
|
pip install pyopencl pycuda torch celery locust prometheus-client |
|
|
|
# 4. Configure database services |
|
sudo systemctl start postgresql redis |
|
sudo -u postgres psql -c "CREATE DATABASE matrix_db;" |
|
sudo -u postgres psql -c "CREATE USER matrix_user WITH PASSWORD 'secure_pass';" |
|
sudo -u postgres psql -c "GRANT ALL PRIVILEGES ON DATABASE matrix_db TO matrix_user;" |
|
|
|
# 5. Build GPU components |
|
nvcc src/core/gpu_kernels/matrix_ops.cu -o src/core/gpu_kernels/matrix_ops.ptx \ |
|
-ptx -arch=sm_80 -O3 |
|
|
|
# 6. Set up monitoring stack |
|
docker-compose -f docker/monitoring/docker-compose.yml up -d \ |
|
prometheus grafana node-exporter |
|
|
|
# 7. Initialize configuration |
|
cat > config/environment.py <<EOL |
|
import os |
|
|
|
class Config: |
|
MATRIX_PRECISION = os.getenv('MATRIX_PRECISION', 'float32') |
|
GPU_ENABLED = bool(os.getenv('USE_GPU', '1')) |
|
REDIS_URL = os.getenv('REDIS_URL', 'redis://localhost:6379/0') |
|
POSTGRES_DSN = os.getenv('POSTGRES_DSN', 'postgresql://matrix_user:secure_pass@localhost/matrix_db') |
|
AUTO_SPARSITY_THRESHOLD = 0.65 |
|
EOL |
|
|
|
# 8. Compile Protocol Buffers |
|
protoc -I=proto |
|
|
|
# 9. Run verification tests |
|
pytest tests/unit/core/test_matrix_ops.py -v |
|
|
|
# 10. Start worker nodes |
|
celery -A config.celery worker |
|
|
|
``` |
|
|
|
To validate the installation: |
|
|
|
```bash |
|
# Verify GPU acceleration |
|
python -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')" |
|
|
|
# Test API endpoint |
|
curl -X POST http://localhost:5000/api/v1/compute \ |
|
-H "Content-Type: application/protobuf" \ |
|
|
|
|
|
# Check monitoring dashboard |
|
open http://localhost:3000/d/deepseek-system-overview |
|
``` |
|
|
|
Key maintenance commands: |
|
|
|
```bash |
|
# Update GPU kernels |
|
make -C src/core/gpu_kernels clean all |
|
|
|
# Database maintenance |
|
pg_partman maintain |
|
|
|
# Cluster scaling |
|
docker swarm init |
|
docker stack deploy -c docker/swarm.yml matrix-cluster |
|
|
|
# License compliance |
|
pip-licenses |
|
``` |
|
|
|
This implementation provides: |
|
|
|
1. Hybrid CPU/GPU computation infrastructure |
|
2. Auto-scaling matrix processing pipeline |
|
3. Real-time performance monitoring |
|
4. Distributed task queue system |
|
5. Version-controlled matrix operations |
|
6. Automated numerical stability checks |
|
|
|
For production deployments, add these environment variables to your `.env` file: |
|
|
|
```ini |
|
MATRIX_PRECISION=float32 |
|
USE_GPU=1 |
|
POSTGRES_DSN=postgresql://user:pass@db-host/matrix_prod |
|
REDIS_URL=redis://redis-cluster:6379/0 |
|
CELERY_BROKER=pyamqp://rabbitmq-host:5672/matrix_vhost |
|
``` |