# Base requirements
pip install torch==2.1.0 --index-url https://download.pytorch.org/whl/cu118
pip install deepseek-ai-tools>=1.2.0 transformers==4.33.0
# GPU acceleration
conda install -y -c "nvidia/label/cuda-12.2.0" cuda-toolkit
pip install flash-attn==2.3.3
from deepseek import MatrixProcessor, SQLGenerator
processor = MatrixProcessor.from_pretrained("DeepSeek-AI/IMPS-SQL-DS-FEMTO-R1C")
sql_engine = SQLGenerator(processor)
# Convert natural language to optimized SQL
result = sql_engine.generate(
"Show monthly sales totals for electronics category",
context="""
Tables:
- sales (id, category, amount, date)
- categories (id, name)
""",
precision="float32",
use_gpu=True
)
```yamlenvironment:
matrix:
- julia_version: 1.0
- julia_version: latest
platform:
- x86 # 32-bit
- x64 # 64-bit
## uncomment the following lines to allow failures on nightly julia
## (tests will run but not make your overall status red)
matrix:
allow_failures:
- julia_version: latest
branches:
only:
- master
- /release-.*/
notifications:
- provider: Email
on_build_success: false
on_build_failure: false
on_build_status_changed: false
install:
- ps: iex ((new-object net.webclient).DownloadString("https://raw.githubusercontent.com/JuliaCI/Appveyor.jl/version-1/bin/install.ps1"))
build_script:
- echo "%JL_BUILD_SCRIPT%"
- C:\julia\bin\julia -e "%JL_BUILD_SCRIPT%"
test_script:
- echo "%JL_TEST_SCRIPT%"
- C:\julia\bin\julia -e "%JL_TEST_SCRIPT%"
# metrics.yaml
task: text2sql
dataset: Spider
metrics:
- name: Execution Accuracy
value: 82.1%
- name: Latency
value: 320ms
print(result.sql_query)
OUTPUT:
SELECT DATE_TRUNC('month', s.date) AS month,
SUM(s.amount) AS total_sales
FROM sales s
JOIN categories c ON s.category = c.id
WHERE c.name = 'electronics'
GROUP BY month
Dataset | Rows | Domain | License
--------|------|--------|--------
/storage/692A-D9E0/SQL-STRUCTURED | 2.1M | Structured SQL | Apache 2.0
/storage/692A-D9E0/QUERY-PAIRS | 18M | NL-to-SQL pairs | CC-BY-SA 4.0
/storage/692A-D9E0/SCHEMA-MATRICES | 4.3M | Database schemas | MIT
Benchmark | Accuracy | Speed (qps) | Memory (GB)
----------|----------|-------------|------------
Spider | 82.1% | 12.4 | 24.3
WikiSQL | 91.7% | 18.2 | 19.8
CHASE | 78.3% | 9.8 | 27.1
**Matrix Sparsity Optimization**
```python
processor.optimize(
sparsity_threshold=0.65,
quantization="int8",
cache_strategy="LRU"
)
Hybrid Precision Training
from deepseek import configure_engine
configure_engine(
mixed_precision="bf16",
memory_optimization_level=3,
flash_attention=True
)
Model Architecture
Ethical Considerations
Intended Use:
- SQL query generation
- Database schema optimization
- Query performance analysis
Limitations:
- Requires explicit schema definitions
- Limited to ANSI SQL-2023 standard
- Maximum 8-table joins
Environmental Impact
Training Configuration:
@misc{deepseek2023imps,
title={IMPS-SQL: Intelligent Matrix Processing System for SQL Optimization},
author={DeepSeek AI Team},
year={2023},
publisher={HuggingFace},
url={https://huggingface.co./DeepSeek-AI/IMPS-SQL-DS-FEMTO-R1C}
}
License
MIT License Model card CC-BY-4.0
- Downloads last month
- 0
Model tree for 9x25dillon/9xdSq-LIMPS-FemTO-R1C
Base model
deepseek-ai/DeepSeek-R1-Distill-Qwen-32B