File size: 3,359 Bytes
4ee902e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
Here's a step-by-step implementation guide to operationalize the DeepSeek-R1 system:
```bash
# 1. Clone and initialize repository
git clone https://github.com/deepseek-ai/matrix-system
cd matrix-system
mkdir -p src/core/{gpu_kernels,sparse,solvers} src/api src/storage src/monitoring \
tests/{unit,stress,chaos} docker docs .github/{ISSUE_TEMPLATE,workflows}
# 2. Install system dependencies
sudo apt update && sudo apt install -y \
ocl-icd-opencl-dev \
nvidia-cuda-toolkit \
postgresql \
redis-server \
python3.11-venv
# 3. Set up Python environment
python3 -m venv .venv
source .venv/bin/activate
pip install -U pip wheel
pip install pyopencl pycuda torch celery locust prometheus-client
# 4. Configure database services
sudo systemctl start postgresql redis
sudo -u postgres psql -c "CREATE DATABASE matrix_db;"
sudo -u postgres psql -c "CREATE USER matrix_user WITH PASSWORD 'secure_pass';"
sudo -u postgres psql -c "GRANT ALL PRIVILEGES ON DATABASE matrix_db TO matrix_user;"
# 5. Build GPU components
nvcc src/core/gpu_kernels/matrix_ops.cu -o src/core/gpu_kernels/matrix_ops.ptx \
-ptx -arch=sm_80 -O3 --use_fast_math
# 6. Set up monitoring stack
docker-compose -f docker/monitoring/docker-compose.yml up -d \
prometheus grafana node-exporter
# 7. Initialize configuration
cat > config/environment.py <<EOL
import os
class Config:
MATRIX_PRECISION = os.getenv('MATRIX_PRECISION', 'float32')
GPU_ENABLED = bool(os.getenv('USE_GPU', '1'))
REDIS_URL = os.getenv('REDIS_URL', 'redis://localhost:6379/0')
POSTGRES_DSN = os.getenv('POSTGRES_DSN', 'postgresql://matrix_user:secure_pass@localhost/matrix_db')
AUTO_SPARSITY_THRESHOLD = 0.65
EOL
# 8. Compile Protocol Buffers
protoc -I=proto --python_out=src/serialization proto/matrix.proto
# 9. Run verification tests
pytest tests/unit/core/test_matrix_ops.py -v
# 10. Start worker nodes
celery -A config.celery worker --loglevel=info -Q gpu_tasks,cpu_tasks \
--concurrency=4 --pool=gevent
```
To validate the installation:
```bash
# Verify GPU acceleration
python -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')"
# Test API endpoint
curl -X POST http://localhost:5000/api/v1/compute \
-H "Content-Type: application/protobuf" \
--data-binary @tests/data/sample_matrix.pb
# Check monitoring dashboard
open http://localhost:3000/d/deepseek-system-overview
```
Key maintenance commands:
```bash
# Update GPU kernels
make -C src/core/gpu_kernels clean all
# Database maintenance
pg_partman maintain --table matrix_results --retention 12 --interval 1month
# Cluster scaling
docker swarm init
docker stack deploy -c docker/swarm.yml matrix-cluster
# License compliance
pip-licenses --format=markdown --with-license-file --output-file=OSS_LICENSES.md
```
This implementation provides:
1. Hybrid CPU/GPU computation infrastructure
2. Auto-scaling matrix processing pipeline
3. Real-time performance monitoring
4. Distributed task queue system
5. Version-controlled matrix operations
6. Automated numerical stability checks
For production deployments, add these environment variables to your `.env` file:
```ini
MATRIX_PRECISION=float32
USE_GPU=1
POSTGRES_DSN=postgresql://user:pass@db-host/matrix_prod
REDIS_URL=redis://redis-cluster:6379/0
CELERY_BROKER=pyamqp://rabbitmq-host:5672/matrix_vhost
``` |