|
--- |
|
license: apache-2.0 |
|
base_model: facebook/bart-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- clupubhealth |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: pubhealth-expanded-1 |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: clupubhealth |
|
type: clupubhealth |
|
config: expanded |
|
split: test |
|
args: expanded |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 28.6755 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pubhealth-expanded-1 |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on the clupubhealth dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.3198 |
|
- Rouge1: 28.6755 |
|
- Rouge2: 9.2869 |
|
- Rougel: 21.9675 |
|
- Rougelsum: 22.2946 |
|
- Gen Len: 19.85 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 12 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 10 |
|
- total_train_batch_size: 120 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| |
|
| 3.6788 | 0.08 | 40 | 2.3758 | 29.5273 | 9.3588 | 22.4799 | 22.6212 | 19.835 | |
|
| 3.4222 | 0.15 | 80 | 2.3484 | 29.0821 | 9.1988 | 22.3907 | 22.5996 | 19.88 | |
|
| 3.3605 | 0.23 | 120 | 2.3500 | 29.2893 | 9.296 | 22.1247 | 22.4075 | 19.94 | |
|
| 3.3138 | 0.31 | 160 | 2.3504 | 29.039 | 8.907 | 21.9631 | 22.2506 | 19.91 | |
|
| 3.2678 | 0.39 | 200 | 2.3461 | 29.678 | 9.4429 | 22.3439 | 22.6962 | 19.92 | |
|
| 3.2371 | 0.46 | 240 | 2.3267 | 28.535 | 9.1858 | 21.3721 | 21.6634 | 19.915 | |
|
| 3.204 | 0.54 | 280 | 2.3330 | 29.0796 | 9.4283 | 21.8953 | 22.1867 | 19.885 | |
|
| 3.1881 | 0.62 | 320 | 2.3164 | 29.1456 | 9.1919 | 21.9529 | 22.235 | 19.945 | |
|
| 3.1711 | 0.69 | 360 | 2.3208 | 29.3212 | 9.4823 | 22.1643 | 22.4159 | 19.895 | |
|
| 3.1752 | 0.77 | 400 | 2.3239 | 29.0408 | 9.3615 | 21.8007 | 22.0795 | 19.945 | |
|
| 3.1591 | 0.85 | 440 | 2.3218 | 28.6336 | 9.2799 | 21.5843 | 21.9422 | 19.845 | |
|
| 3.1663 | 0.93 | 480 | 2.3198 | 28.6755 | 9.2869 | 21.9675 | 22.2946 | 19.85 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|