metadata
language:
- ca
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Tiny Catalan
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_13_0 ca
type: mozilla-foundation/common_voice_13_0
config: ca
split: test
args: ca
metrics:
- name: Wer
type: wer
value: 16.904258359531294
Whisper Tiny Catalan
This model is a fine-tuned version of openai/whisper-tiny on the mozilla-foundation/common_voice_13_0 ca dataset. It achieves the following results on the evaluation set:
- Loss: 0.3180
- Wer: 16.9043
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3.75e-05
- train_batch_size: 256
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2098 | 7.02 | 1000 | 0.3994 | 22.5047 |
0.162 | 15.02 | 2000 | 0.3454 | 19.4181 |
0.0662 | 23.01 | 3000 | 0.3526 | 18.5687 |
0.0934 | 31.01 | 4000 | 0.3312 | 18.1600 |
0.1167 | 39.0 | 5000 | 0.3180 | 16.9043 |
Framework versions
- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3