whisper-medium-ca / README.md
zuazo's picture
End of training
1f22ad4
---
language:
- ca
license: apache-2.0
base_model: openai/whisper-medium
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Medium Catalan
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_13_0 ca
type: mozilla-foundation/common_voice_13_0
config: ca
split: test
args: ca
metrics:
- name: Wer
type: wer
value: 5.995427264932838
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium Catalan
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the mozilla-foundation/common_voice_13_0 ca dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1434
- Wer: 5.9954
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.1158 | 1.05 | 1000 | 0.1846 | 8.3630 |
| 0.0184 | 3.05 | 2000 | 0.2017 | 8.0629 |
| 0.0522 | 5.04 | 3000 | 0.1940 | 8.1177 |
| 0.0595 | 7.04 | 4000 | 0.1742 | 7.4696 |
| 0.0179 | 9.04 | 5000 | 0.1899 | 7.3095 |
| 0.0646 | 11.04 | 6000 | 0.1555 | 6.3441 |
| 0.0825 | 13.03 | 7000 | 0.1810 | 6.4841 |
| 0.0309 | 15.03 | 8000 | 0.1464 | 6.3544 |
| 0.0695 | 17.03 | 9000 | 0.1434 | 5.9954 |
| 0.0186 | 19.03 | 10000 | 0.1706 | 6.1097 |
### Framework versions
- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3