Whisper Large-V3 Basque

This model is a fine-tuned version of openai/whisper-large-v3 on the mozilla-foundation/common_voice_13_0 eu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4180
  • Wer: 13.2886

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1288 5.85 1000 0.2746 18.6000
0.0262 11.7 2000 0.2894 16.0934
0.0095 17.54 3000 0.3281 15.7348
0.0056 23.39 4000 0.3362 14.7394
0.0045 29.24 5000 0.3465 14.9912
0.0032 35.09 6000 0.3599 14.7172
0.002 40.94 7000 0.3624 14.4150
0.0028 46.78 8000 0.3647 14.4553
0.0019 52.63 9000 0.3726 14.4210
0.0011 58.48 10000 0.3784 14.1268
0.0011 64.33 11000 0.3753 14.2517
0.0009 70.18 12000 0.3845 13.9193
0.0008 76.02 13000 0.3910 14.0402
0.0008 81.87 14000 0.3988 13.8488
0.0004 87.72 15000 0.4002 13.5788
0.0002 93.57 16000 0.4021 13.5526
0.0002 99.42 17000 0.4121 13.5747
0.0002 105.26 18000 0.4178 13.5989
0.0005 111.11 19000 0.4135 13.3551
0.0001 116.96 20000 0.4180 13.2886

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
7
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for zuazo/whisper-large-v3-eu-train

Finetuned
(371)
this model

Dataset used to train zuazo/whisper-large-v3-eu-train

Evaluation results